BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 29752120)

  • 1. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.
    Christensen K; Davis B; Jin Y; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():65-74. PubMed ID: 29752120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing fiber reinforced hydrogel composites.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15998-6006. PubMed ID: 25197745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of cell viability and morphology in 3D bio-printed alginate constructs with tunable stiffness.
    Shi P; Laude A; Yeong WY
    J Biomed Mater Res A; 2017 Apr; 105(4):1009-1018. PubMed ID: 27935198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    Macromol Rapid Commun; 2015 Jun; 36(12):1211-7. PubMed ID: 25864515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional inkjet biofabrication based on designed images.
    Arai K; Iwanaga S; Toda H; Genci C; Nishiyama Y; Nakamura M
    Biofabrication; 2011 Sep; 3(3):034113. PubMed ID: 21900730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeform inkjet printing of cellular structures with bifurcations.
    Christensen K; Xu C; Chai W; Zhang Z; Fu J; Huang Y
    Biotechnol Bioeng; 2015 May; 112(5):1047-55. PubMed ID: 25421556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.
    Xiong R; Zhang Z; Chai W; Huang Y; Chrisey DB
    Biofabrication; 2015 Dec; 7(4):045011. PubMed ID: 26693735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.
    Valentin TM; Leggett SE; Chen PY; Sodhi JK; Stephens LH; McClintock HD; Sim JY; Wong IY
    Lab Chip; 2017 Oct; 17(20):3474-3488. PubMed ID: 28906525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdrop printing of hydrogel bioinks into 3D tissue-like geometries.
    Pataky K; Braschler T; Negro A; Renaud P; Lutolf MP; Brugger J
    Adv Mater; 2012 Jan; 24(3):391-6. PubMed ID: 22161949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Inkjet Printing of Complex, Cell-Laden Hydrogel Structures.
    Negro A; Cherbuin T; Lutolf MP
    Sci Rep; 2018 Nov; 8(1):17099. PubMed ID: 30459444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling Free-Standing 3D Hydrogel Microstructures with Microreactive Inkjet Printing.
    Teo MY; Kee S; RaviChandran N; Stuart L; Aw KC; Stringer J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1832-1839. PubMed ID: 31820627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.
    Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels.
    Kang LH; Armstrong PA; Lee LJ; Duan B; Kang KH; Butcher JT
    Ann Biomed Eng; 2017 Feb; 45(2):360-377. PubMed ID: 27106636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.
    Yang Q; Li J; Xu H; Long S; Li X
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):459-469. PubMed ID: 28105891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.
    Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L
    J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Straightforward Approach for 3D Bacterial Printing.
    Lehner BAE; Schmieden DT; Meyer AS
    ACS Synth Biol; 2017 Jul; 6(7):1124-1130. PubMed ID: 28225616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.