These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 29752241)

  • 21. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees.
    Guémann M; Halgand C; Bastier A; Lansade C; Borrini L; Lapeyre É; Cattaert D; de Rugy A
    J Neuroeng Rehabil; 2022 Jun; 19(1):59. PubMed ID: 35690860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor control over the phantom limb in above-elbow amputees and its relationship with phantom limb pain.
    Gagné M; Reilly KT; Hétu S; Mercier C
    Neuroscience; 2009 Aug; 162(1):78-86. PubMed ID: 19406214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous Control of 2DOF Upper-Limb Prosthesis With Body Compensations-Based Control: A Multiple Cases Study.
    Legrand M; Marchand C; Richer F; Touillet A; Martinet N; Paysant J; Morel G; Jarrasse N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1745-1754. PubMed ID: 35749322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses.
    Li G; Li Y; Yu L; Geng Y
    Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove.
    Sebelius FC; Rosén BN; Lundborg GN
    J Hand Surg Am; 2005 Jul; 30(4):780-9. PubMed ID: 16039372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.
    Amsuess S; Goebel P; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can transcranial direct current stimulation enhance performance of myoelectric control for multifunctional prosthesis?
    Pan L; Zhang D; Duan R; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3566-9. PubMed ID: 25570761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees.
    Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN
    J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on Interaction Between Temporal and Spatial Information in Classification of EMG Signals for Myoelectric Prostheses.
    Menon R; Di Caterina G; Lakany H; Petropoulakis L; Conway BA; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1832-1842. PubMed ID: 28436879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature Selection and Non-Linear Classifiers: Effects on Simultaneous Motion Recognition in Upper Limb.
    Camargo J; Young A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):743-750. PubMed ID: 30869626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks.
    Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ
    Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees.
    De Asha AR; Buckley JG
    Clin Biomech (Bristol, Avon); 2015 May; 30(4):343-6. PubMed ID: 25779690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The DEKA Arm: its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm.
    Resnik L; Klinger SL; Etter K
    Prosthet Orthot Int; 2014 Dec; 38(6):492-504. PubMed ID: 24150930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.