BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 29752334)

  • 1. TG2 regulates the heat-shock response by the post-translational modification of HSF1.
    Rossin F; Villella VR; D'Eletto M; Farrace MG; Esposito S; Ferrari E; Monzani R; Occhigrossi L; Pagliarini V; Sette C; Cozza G; Barlev NA; Falasca L; Fimia GM; Kroemer G; Raia V; Maiuri L; Piacentini M
    EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29752334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2.
    Occhigrossi L; D'Eletto M; Barlev N; Rossin F
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34198675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transglutaminase Type 2 regulates the Wnt/β-catenin pathway in vertebrates.
    Rossin F; Costa R; Bordi M; D'Eletto M; Occhigrossi L; Farrace MG; Barlev N; Ciccosanti F; Muccioli S; Chieregato L; Szabo I; Fimia GM; Piacentini M; Leanza L
    Cell Death Dis; 2021 Mar; 12(3):249. PubMed ID: 33674551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MED12 interacts with the heat-shock transcription factor HSF1 and recruits CDK8 to promote the heat-shock response in mammalian cells.
    Srivastava P; Takii R; Okada M; Fujimoto M; Nakai A
    FEBS Lett; 2021 Jul; 595(14):1933-1948. PubMed ID: 34056708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock transcription factor 1 is SUMOylated in the activated trimeric state.
    Kmiecik SW; Drzewicka K; Melchior F; Mayer MP
    J Biol Chem; 2021; 296():100324. PubMed ID: 33493517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsf1 on a leash - controlling the heat shock response by chaperone titration.
    Masser AE; Ciccarelli M; Andréasson C
    Exp Cell Res; 2020 Nov; 396(1):112246. PubMed ID: 32861670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA.
    Fujimoto M; Takii R; Katiyar A; Srivastava P; Nakai A
    Mol Cell Biol; 2018 Jul; 38(13):. PubMed ID: 29661921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment.
    Takii R; Fujimoto M; Matsumoto M; Srivastava P; Katiyar A; Nakayama KI; Nakai A
    EMBO J; 2019 Dec; 38(24):e102566. PubMed ID: 31657478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock transcription factor 1 is activated as a consequence of lymphocyte activation and regulates a major proteostasis network in T cells critical for cell division during stress.
    Gandhapudi SK; Murapa P; Threlkeld ZD; Ward M; Sarge KD; Snow C; Woodward JG
    J Immunol; 2013 Oct; 191(8):4068-79. PubMed ID: 24043900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forkhead box M1 is regulated by heat shock factor 1 and promotes glioma cells survival under heat shock stress.
    Dai B; Gong A; Jing Z; Aldape KD; Kang SH; Sawaya R; Huang S
    J Biol Chem; 2013 Jan; 288(3):1634-42. PubMed ID: 23192351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Hsf1 and the Heat Shock Response.
    Pincus D
    Adv Exp Med Biol; 2020; 1243():41-50. PubMed ID: 32297210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.
    Trinklein ND; Murray JI; Hartman SJ; Botstein D; Myers RM
    Mol Biol Cell; 2004 Mar; 15(3):1254-61. PubMed ID: 14668476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of HSF1 transcriptional complexes under proteotoxic stress: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates.
    Fujimoto M; Takii R; Nakai A
    Bioessays; 2023 Jul; 45(7):e2300036. PubMed ID: 37092382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of heat shock factor 1 maintains TAR DNA binding protein 43 solubility via induction of inducible heat shock protein 70 in cultured cells.
    Lin PY; Folorunso O; Taglialatela G; Pierce A
    J Neurosci Res; 2016 Jul; 94(7):671-82. PubMed ID: 26994698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response.
    Gómez AV; Córdova G; Munita R; Parada GE; Barrios ÁP; Cancino GI; Álvarez AR; Andrés ME
    PLoS One; 2015; 10(6):e0129329. PubMed ID: 26053851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.
    Meijering RA; Wiersma M; van Marion DM; Zhang D; Hoogstra-Berends F; Dijkhuis AJ; Schmidt M; Wieland T; Kampinga HH; Henning RH; Brundel BJ
    PLoS One; 2015; 10(7):e0133553. PubMed ID: 26193369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HSF1 mediated TNF-α production during proteotoxic stress response pioneers proinflammatory signal in human cells.
    Ali A; Biswas A; Pal M
    FASEB J; 2019 Feb; 33(2):2621-2635. PubMed ID: 30307772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi based transcriptome suggests genes potentially regulated by HSF1 in the Pacific oyster Crassostrea gigas under thermal stress.
    Liu Y; Li L; Huang B; Wang W; Zhang G
    BMC Genomics; 2019 Aug; 20(1):639. PubMed ID: 31395030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic selection for constitutively trimerized human HSF1 mutants identifies a role for coiled-coil motifs in DNA binding.
    Neef DW; Jaeger AM; Thiele DJ
    G3 (Bethesda); 2013 Aug; 3(8):1315-24. PubMed ID: 23733891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast.
    Batista-Nascimento L; Neef DW; Liu PC; Rodrigues-Pousada C; Thiele DJ
    PLoS One; 2011 Jan; 6(1):e15976. PubMed ID: 21253609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.