These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29752335)

  • 1. Retraction of rod-like mitochondria during microtubule-dependent transport.
    De Rossi MC; Levi V; Bruno L
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29752335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence correlation spectroscopy reveals the dynamics of kinesins interacting with organelles during microtubule-dependent transport in cells.
    De Rossi MC; González Bardeci N; Álvarez Y; Mocskos E; Romero JJ; Bruno L; Wetzler DE; Levi V
    Biochim Biophys Acta Mol Cell Res; 2020 Jan; 1867(1):118572. PubMed ID: 31678117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport.
    De Rossi MC; De Rossi ME; Sued M; Rodríguez D; Bruno L; Levi V
    FEBS Lett; 2015 Sep; 589(19 Pt B):2763-8. PubMed ID: 26247430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When size does matter: organelle size influences the properties of transport mediated by molecular motors.
    De Rossi MC; Bruno L; Wolosiuk A; Despósito MA; Levi V
    Biochim Biophys Acta; 2013 Nov; 1830(11):5095-103. PubMed ID: 23872153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons.
    Pilling AD; Horiuchi D; Lively CM; Saxton WM
    Mol Biol Cell; 2006 Apr; 17(4):2057-68. PubMed ID: 16467387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
    Levi V; Serpinskaya AS; Gratton E; Gelfand V
    Biophys J; 2006 Jan; 90(1):318-27. PubMed ID: 16214870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions and regulation of molecular motors in Xenopus melanophores.
    Gross SP; Tuma MC; Deacon SW; Serpinskaya AS; Reilein AR; Gelfand VI
    J Cell Biol; 2002 Mar; 156(5):855-65. PubMed ID: 11864991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes.
    Messitt TJ; Gagnon JA; Kreiling JA; Pratt CA; Yoon YJ; Mowry KL
    Dev Cell; 2008 Sep; 15(3):426-436. PubMed ID: 18771961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
    Chaudhary AR; Berger F; Berger CL; Hendricks AG
    Traffic; 2018 Feb; 19(2):111-121. PubMed ID: 29077261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila.
    Horiuchi D; Barkus RV; Pilling AD; Gassman A; Saxton WM
    Curr Biol; 2005 Dec; 15(23):2137-41. PubMed ID: 16332540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.
    Rezaul K; Gupta D; Semenova I; Ikeda K; Kraikivski P; Yu J; Cowan A; Zaliapin I; Rodionov V
    Traffic; 2016 May; 17(5):475-86. PubMed ID: 26843027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles.
    Bruno L; Echarte MM; Levi V
    Cell Biochem Biophys; 2008; 52(3):191-201. PubMed ID: 19002657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes.
    Baumann S; Pohlmann T; Jungbluth M; Brachmann A; Feldbrügge M
    J Cell Sci; 2012 Jun; 125(Pt 11):2740-52. PubMed ID: 22357951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.
    De Rossi MC; Wetzler DE; Benseñor L; De Rossi ME; Sued M; Rodríguez D; Gelfand V; Bruno L; Levi V
    Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3178-3189. PubMed ID: 28935608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3.
    Peñalva MA; Zhang J; Xiang X; Pantazopoulou A
    Mol Biol Cell; 2017 Apr; 28(7):947-961. PubMed ID: 28209731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development.
    Lane JD; Allan VJ
    Mol Biol Cell; 1999 Jun; 10(6):1909-22. PubMed ID: 10359605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport.
    Martin M; Iyadurai SJ; Gassman A; Gindhart JG; Hays TS; Saxton WM
    Mol Biol Cell; 1999 Nov; 10(11):3717-28. PubMed ID: 10564267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites.
    Lee S; Sunil N; Tejada JM; Shea TB
    J Cell Sci; 2011 Apr; 124(Pt 7):1022-31. PubMed ID: 21363889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale trend analysis of microtubule transport in melanophores.
    Zaliapin I; Semenova I; Kashina A; Rodionov V
    Biophys J; 2005 Jun; 88(6):4008-16. PubMed ID: 15764663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the roles of kinesin and dynein motors in microtubule-based transport in the Caenorhabditis elegans nervous system.
    Signor D; Rose LS; Scholey JM
    Methods; 2000 Dec; 22(4):317-25. PubMed ID: 11133238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.