These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29752432)
41. Engineering Escherichia coli coculture systems for the production of biochemical products. Zhang H; Pereira B; Li Z; Stephanopoulos G Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8266-71. PubMed ID: 26111796 [TBL] [Abstract][Full Text] [Related]
42. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Zhu F; Zhong X; Hu M; Lu L; Deng Z; Liu T Biotechnol Bioeng; 2014 Jul; 111(7):1396-405. PubMed ID: 24473754 [TBL] [Abstract][Full Text] [Related]
43. Modular reconstruction and optimization of the trans-4-hydroxy-L-proline synthesis pathway in Escherichia coli. Zhang Z; Su W; Bao Y; Huang Q; Ye K; Liu P; Chu X Microb Cell Fact; 2022 Aug; 21(1):159. PubMed ID: 35953819 [TBL] [Abstract][Full Text] [Related]
44. Characterization of bacterial beta-carotene 3,3'-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli. Choi SK; Matsuda S; Hoshino T; Peng X; Misawa N Appl Microbiol Biotechnol; 2006 Oct; 72(6):1238-46. PubMed ID: 16614859 [TBL] [Abstract][Full Text] [Related]
45. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413 [TBL] [Abstract][Full Text] [Related]
47. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli. Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929 [TBL] [Abstract][Full Text] [Related]
48. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid. Farré G; Perez-Fons L; Decourcelle M; Breitenbach J; Hem S; Zhu C; Capell T; Christou P; Fraser PD; Sandmann G Transgenic Res; 2016 Aug; 25(4):477-89. PubMed ID: 26931320 [TBL] [Abstract][Full Text] [Related]
49. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A. Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681 [TBL] [Abstract][Full Text] [Related]
50. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Zelcbuch L; Antonovsky N; Bar-Even A; Levin-Karp A; Barenholz U; Dayagi M; Liebermeister W; Flamholz A; Noor E; Amram S; Brandis A; Bareia T; Yofe I; Jubran H; Milo R Nucleic Acids Res; 2013 May; 41(9):e98. PubMed ID: 23470993 [TBL] [Abstract][Full Text] [Related]
51. Constraint-based modeling of heterologous pathways: application and experimental demonstration for overproduction of fatty acids in Escherichia coli. Ip K; Donoghue N; Kim MK; Lun DS Biotechnol Bioeng; 2014 Oct; 111(10):2056-66. PubMed ID: 24838438 [TBL] [Abstract][Full Text] [Related]
52. Heterologous biosynthesis of costunolide in Escherichia coli and yield improvement. Yin H; Zhuang YB; Li EE; Bi HP; Zhou W; Liu T Biotechnol Lett; 2015 Jun; 37(6):1249-55. PubMed ID: 25700819 [TBL] [Abstract][Full Text] [Related]
53. cDNA cloning of a novel gene codifying for the enzyme lycopene β-cyclase from Ficus carica and its expression in Escherichia coli. Araya-Garay JM; Feijoo-Siota L; Veiga-Crespo P; Villa TG Appl Microbiol Biotechnol; 2011 Nov; 92(4):769-77. PubMed ID: 21792589 [TBL] [Abstract][Full Text] [Related]
55. Creation of new metabolic pathways or improvement of existing metabolic enzymes by in vivo evolution in Escherichia coli. Meynial-Salles I; Soucaille P Methods Mol Biol; 2012; 834():75-86. PubMed ID: 22144354 [TBL] [Abstract][Full Text] [Related]
56. Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways. Liu W; Tuck LR; Wright JM; Cai Y Methods Mol Biol; 2017; 1642():285-302. PubMed ID: 28815507 [TBL] [Abstract][Full Text] [Related]
57. Construction of an alternative glycerol-utilization pathway for improved β-carotene production in Escherichia coli. Guo JY; Hu KL; Bi CH; Li QY; Zhang XL J Ind Microbiol Biotechnol; 2018 Aug; 45(8):697-705. PubMed ID: 29752566 [TBL] [Abstract][Full Text] [Related]
58. Engineering a branch of the UDP-precursor biosynthesis pathway enhances the production of capsular polysaccharide in Escherichia coli O5:K4:H4. Cimini D; Carlino E; Giovane A; Argenzio O; Dello Iacono I; De Rosa M; Schiraldi C Biotechnol J; 2015 Aug; 10(8):1307-15. PubMed ID: 26153362 [TBL] [Abstract][Full Text] [Related]
59. Establishing an Artificial Pathway for De Novo Biosynthesis of Vanillyl Alcohol in Escherichia coli. Chen Z; Shen X; Wang J; Wang J; Zhang R; Rey JF; Yuan Q; Yan Y ACS Synth Biol; 2017 Sep; 6(9):1784-1792. PubMed ID: 28586214 [TBL] [Abstract][Full Text] [Related]
60. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Zhou Y; Nambou K; Wei L; Cao J; Imanaka T; Hua Q Biotechnol Lett; 2013 Dec; 35(12):2137-45. PubMed ID: 24062132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]