These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29752432)
61. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. George KW; Chen A; Jain A; Batth TS; Baidoo EE; Wang G; Adams PD; Petzold CJ; Keasling JD; Lee TS Biotechnol Bioeng; 2014 Aug; 111(8):1648-58. PubMed ID: 24615242 [TBL] [Abstract][Full Text] [Related]
62. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. Xu P; Vansiri A; Bhan N; Koffas MA ACS Synth Biol; 2012 Jul; 1(7):256-66. PubMed ID: 23651248 [TBL] [Abstract][Full Text] [Related]
63. Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin. Zhou P; Li M; Shen B; Yao Z; Bian Q; Ye L; Yu H J Agric Food Chem; 2019 Jan; 67(4):1072-1080. PubMed ID: 30606005 [TBL] [Abstract][Full Text] [Related]
64. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788 [TBL] [Abstract][Full Text] [Related]
65. Plasma appearance of unesterified astaxanthin geometrical E/Z and optical R/S isomers in men given single doses of a mixture of optical 3 and 3'R/S isomers of astaxanthin fatty acyl diesters. Coral-Hinostroza GN; Ytrestøyl T; Ruyter B; Bjerkeng B Comp Biochem Physiol C Toxicol Pharmacol; 2004 Oct; 139(1-3):99-110. PubMed ID: 15556071 [TBL] [Abstract][Full Text] [Related]
66. A "plug-n-play" modular metabolic system for the production of apocarotenoids. Zhang C; Chen X; Lindley ND; Too HP Biotechnol Bioeng; 2018 Jan; 115(1):174-183. PubMed ID: 29077207 [TBL] [Abstract][Full Text] [Related]
67. Increase in the production of β-carotene in recombinant Escherichia coli cultured in a chemically defined medium supplemented with amino acids. Nam HK; Choi JG; Lee JH; Kim SW; Oh DK Biotechnol Lett; 2013 Feb; 35(2):265-71. PubMed ID: 23108873 [TBL] [Abstract][Full Text] [Related]
68. Over-production of beta-carotene from metabolically engineered Escherichia coli. Kim SW; Kim JB; Jung WH; Kim JH; Jung JK Biotechnol Lett; 2006 Jun; 28(12):897-904. PubMed ID: 16786275 [TBL] [Abstract][Full Text] [Related]
69. Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes. Pham VD; Somasundaram S; Lee SH; Park SJ; Hong SH Biotechnol Lett; 2016 Feb; 38(2):321-7. PubMed ID: 26476527 [TBL] [Abstract][Full Text] [Related]
70. Efficient Biosynthesis of Wang X; Wu J; Chen J; Xiao L; Zhang Y; Wang F; Li X J Agric Food Chem; 2020 Aug; 68(31):8381-8390. PubMed ID: 32657129 [No Abstract] [Full Text] [Related]
71. Engineering Escherichia coli for high-level production of propionate. Akawi L; Srirangan K; Liu X; Moo-Young M; Perry Chou C J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1057-72. PubMed ID: 25948049 [TBL] [Abstract][Full Text] [Related]
72. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280 [TBL] [Abstract][Full Text] [Related]
73. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Jan J; Martinez I; Wang Y; Bennett GN; San KY Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523 [TBL] [Abstract][Full Text] [Related]
74. Microbial production strategies and applications of lycopene and other terpenoids. Ma T; Deng Z; Liu T World J Microbiol Biotechnol; 2016 Jan; 32(1):15. PubMed ID: 26715120 [TBL] [Abstract][Full Text] [Related]
75. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. Cabulong RB; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Lee CR; Chung WJ Enzyme Microb Technol; 2017 Feb; 97():11-20. PubMed ID: 28010767 [TBL] [Abstract][Full Text] [Related]
76. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis. Wu MY; Sung LY; Li H; Huang CH; Hu YC ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333 [TBL] [Abstract][Full Text] [Related]
77. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol. Machas MS; McKenna R; Nielsen DR Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719 [TBL] [Abstract][Full Text] [Related]
78. Metabolic engineering of Mucor circinelloides for zeaxanthin production. Rodríguez-Sáiz M; de la Fuente JL; Barredo JL Methods Mol Biol; 2012; 898():133-51. PubMed ID: 22711122 [TBL] [Abstract][Full Text] [Related]
79. Improving alkane synthesis in Escherichia coli via metabolic engineering. Song X; Yu H; Zhu K Appl Microbiol Biotechnol; 2016 Jan; 100(2):757-67. PubMed ID: 26476644 [TBL] [Abstract][Full Text] [Related]
80. Metabolic engineering for improving L-tryptophan production in Escherichia coli. Niu H; Li R; Liang Q; Qi Q; Li Q; Gu P J Ind Microbiol Biotechnol; 2019 Jan; 46(1):55-65. PubMed ID: 30426284 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]