BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29752463)

  • 1. Personalization of prostate cancer therapy through phosphoproteomics.
    Yang W; Freeman MR; Kyprianou N
    Nat Rev Urol; 2018 Aug; 15(8):483-497. PubMed ID: 29752463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine.
    Wu X; Xing X; Dowlut D; Zeng Y; Liu J; Liu X
    J Proteomics; 2019 Jan; 191():68-79. PubMed ID: 29621648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision medicine for advanced prostate cancer.
    Mullane SA; Van Allen EM
    Curr Opin Urol; 2016 May; 26(3):231-9. PubMed ID: 26909474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.
    Labots M; van der Mijn JC; Beekhof R; Piersma SR; de Goeij-de Haas RR; Pham TV; Knol JC; Dekker H; van Grieken NCT; Verheul HMW; Jiménez CR
    J Proteomics; 2017 Jun; 162():99-107. PubMed ID: 28442448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: Reanalysis of CPTAC ovarian cancer.
    Tong M; Yu C; Zhan D; Zhang M; Zhen B; Zhu W; Wang Y; Wu C; He F; Qin J; Li T
    EBioMedicine; 2019 Feb; 40():305-317. PubMed ID: 30594550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the prostate tumour microenvironment II: Impact of hypoxia on a cell model of prostate cancer progression.
    Tonry C; Armstrong J; Pennington S
    Oncotarget; 2017 Feb; 8(9):15307-15337. PubMed ID: 28410543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives.
    Zhou L; Wang K; Li Q; Nice EC; Zhang H; Huang C
    Expert Rev Proteomics; 2016; 13(4):367-81. PubMed ID: 26923776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Phosphoproteomics in the Era of Precision Medicine for Prostate Cancer.
    Ramroop JR; Stein MN; Drake JM
    Front Oncol; 2018; 8():28. PubMed ID: 29503809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug discovery in advanced prostate cancer: translating biology into therapy.
    Yap TA; Smith AD; Ferraldeschi R; Al-Lazikani B; Workman P; de Bono JS
    Nat Rev Drug Discov; 2016 Oct; 15(10):699-718. PubMed ID: 27444228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive review of genomic landscape, biomarkers and treatment sequencing in castration-resistant prostate cancer.
    Seisen T; RouprĂȘt M; Gomez F; Malouf GG; Shariat SF; Peyronnet B; Spano JP; Cancel-Tassin G; Cussenot O
    Cancer Treat Rev; 2016 Jul; 48():25-33. PubMed ID: 27327958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the prostate tumour microenvironment I: impact of glucose deprivation on a cell model of prostate cancer progression.
    Tonry C; Armstrong J; Pennington SR
    Oncotarget; 2017 Feb; 8(9):14374-14394. PubMed ID: 28086232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Targets and Precision Medicine for Prostate Cancer-Part 2: Tumor Profiling and Personalized Therapy in Patients With Castration-Resistant Prostate Cancer.
    Considine B; Petrylak DP
    Oncology (Williston Park); 2019 Apr; 33(4):128-31. PubMed ID: 30990564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets.
    Drake JM; Graham NA; Lee JK; Stoyanova T; Faltermeier CM; Sud S; Titz B; Huang J; Pienta KJ; Graeber TG; Witte ON
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):E4762-9. PubMed ID: 24248375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision medicine and phosphoproteomics for the identification of novel targeted therapeutic avenues in sarcomas.
    Fordham AM; Ekert PG; Fleuren EDG
    Biochim Biophys Acta Rev Cancer; 2021 Dec; 1876(2):188613. PubMed ID: 34390800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer.
    Drake JM; Paull EO; Graham NA; Lee JK; Smith BA; Titz B; Stoyanova T; Faltermeier CM; Uzunangelov V; Carlin DE; Fleming DT; Wong CK; Newton Y; Sudha S; Vashisht AA; Huang J; Wohlschlegel JA; Graeber TG; Witte ON; Stuart JM
    Cell; 2016 Aug; 166(4):1041-1054. PubMed ID: 27499020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Basis of Drug Resistance and Insights for New Treatment Approaches in mCRPC.
    Giacinti S; Poti G; Roberto M; Macrini S; Bassanelli M; DI Pietro F; Aschelter AM; Ceribelli A; Ruggeri EM; Marchetti P
    Anticancer Res; 2018 Nov; 38(11):6029-6039. PubMed ID: 30396917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCTP Has a Crucial Role in the Different Stages of Prostate Cancer Malignant Progression.
    Baylot V; Karaki S; Rocchi P
    Results Probl Cell Differ; 2017; 64():255-261. PubMed ID: 29149413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular landscape of prostate cancer: implications for current clinical trials.
    Khemlina G; Ikeda S; Kurzrock R
    Cancer Treat Rev; 2015 Nov; 41(9):761-6. PubMed ID: 26210103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostate cancer molecular profiling: the Achilles heel for the implementation of precision medicine.
    Oliveira-Barros EG; Nicolau-Neto P; Da Costa NM; Pinto LFR; Palumbo A; Nasciutti LE
    Cell Biol Int; 2017 Nov; 41(11):1239-1245. PubMed ID: 28477422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of Clinical Phosphoproteomics and Proteomics for Personalized Medicine.
    Casado P; Hijazi M; Gerdes H; Cutillas PR
    Methods Mol Biol; 2022; 2420():87-106. PubMed ID: 34905168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.