These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29752763)

  • 1. Cofactor Biogenesis in Cysteamine Dioxygenase: C-F Bond Cleavage with Genetically Incorporated Unnatural Tyrosine.
    Wang Y; Griffith WP; Li J; Koto T; Wherritt DJ; Fritz E; Liu A
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8149-8153. PubMed ID: 29752763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine.
    Li J; Koto T; Davis I; Liu A
    Biochemistry; 2019 Apr; 58(17):2218-2227. PubMed ID: 30946568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Monofluorinated Radical Cofactor in Galactose Oxidase through Copper-Mediated C-F Bond Scission.
    Li J; Davis I; Griffith WP; Liu A
    J Am Chem Soc; 2020 Nov; 142(44):18753-18757. PubMed ID: 33091303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleavage of a carbon-fluorine bond by an engineered cysteine dioxygenase.
    Li J; Griffith WP; Davis I; Shin I; Wang J; Li F; Wang Y; Wherritt DJ; Liu A
    Nat Chem Biol; 2018 Sep; 14(9):853-860. PubMed ID: 29942080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F
    Wang Y; Yan L; Li X; Zhang S; Wei J; Liu Y
    Inorg Chem; 2021 Jun; 60(11):7844-7856. PubMed ID: 34008401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
    Fernandez RL; Juntunen ND; Brunold TC
    Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic investigation of iron(III) cysteamine dioxygenase in the presence of substrate (analogs): implications for the nature of substrate-bound reaction intermediates.
    Fernandez RL; Juntunen ND; Fox BG; Brunold TC
    J Biol Inorg Chem; 2021 Dec; 26(8):947-955. PubMed ID: 34580769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology.
    Sarkar B; Kulharia M; Mantha AK
    Int J Exp Pathol; 2017 Apr; 98(2):52-66. PubMed ID: 28439920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase.
    Dominy JE; Simmons CR; Hirschberger LL; Hwang J; Coloso RM; Stipanuk MH
    J Biol Chem; 2007 Aug; 282(35):25189-98. PubMed ID: 17581819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor.
    Ye S; Wu X; Wei L; Tang D; Sun P; Bartlam M; Rao Z
    J Biol Chem; 2007 Feb; 282(5):3391-402. PubMed ID: 17135237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates.
    Wang Y; Davis I; Chan Y; Naik SG; Griffith WP; Liu A
    J Biol Chem; 2020 Aug; 295(33):11789-11802. PubMed ID: 32601061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity.
    Dominy JE; Hwang J; Guo S; Hirschberger LL; Zhang S; Stipanuk MH
    J Biol Chem; 2008 May; 283(18):12188-201. PubMed ID: 18308719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.
    Arjune S; Schwarz G; Belaidi AA
    Amino Acids; 2015 Jan; 47(1):55-63. PubMed ID: 25261132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol dioxygenases: unique families of cupin proteins.
    Stipanuk MH; Simmons CR; Karplus PA; Dominy JE
    Amino Acids; 2011 Jun; 41(1):91-102. PubMed ID: 20195658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of active amino acid residues of the mercaptosuccinate dioxygenase of Variovorax paradoxus B4.
    Brandt U; Galant G; Meinert-Berning C; Steinbüchel A
    Enzyme Microb Technol; 2019 Jan; 120():61-68. PubMed ID: 30396400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Tris(pyrazolyl)borate-Based Models of Cysteine/Cysteamine Dioxygenases through Steric Effects: Increased Reactivities, Full Product Characterization and Hints to Initial Superoxide Formation.
    Müller L; Hoof S; Keck M; Herwig C; Limberg C
    Chemistry; 2020 Sep; 26(51):11851-11861. PubMed ID: 32432367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging roles for thiol dioxygenases as oxygen sensors.
    Gunawardana DM; Heathcote KC; Flashman E
    FEBS J; 2022 Sep; 289(18):5426-5439. PubMed ID: 34346181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Crystal Structure of Cysteamine Dioxygenase Reveals the Origin of the Large Substrate Scope of This Vital Mammalian Enzyme.
    Fernandez RL; Elmendorf LD; Smith RW; Bingman CA; Fox BG; Brunold TC
    Biochemistry; 2021 Dec; 60(48):3728-3737. PubMed ID: 34762398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-Based Insights into the Role of the Cys-Tyr Crosslink and Inhibitor Recognition by Mammalian Cysteine Dioxygenase.
    Driggers CM; Kean KM; Hirschberger LL; Cooley RB; Stipanuk MH; Karplus PA
    J Mol Biol; 2016 Oct; 428(20):3999-4012. PubMed ID: 27477048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.