These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29752763)

  • 21. Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase.
    Miller JR; Brunold TC
    Methods Enzymol; 2023; 682():101-135. PubMed ID: 36948699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Outer-Sphere Tyrosine 159 within the 3-Mercaptopropionic Acid Dioxygenase S-H-Y Motif Gates Substrate-Coordination Denticity at the Non-Heme Iron Active Site.
    Sardar S; Weitz A; Hendrich MP; Pierce BS
    Biochemistry; 2019 Dec; 58(51):5135-5150. PubMed ID: 31750652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A putative Fe2+-bound persulfenate intermediate in cysteine dioxygenase.
    Simmons CR; Krishnamoorthy K; Granett SL; Schuller DJ; Dominy JE; Begley TP; Stipanuk MH; Karplus PA
    Biochemistry; 2008 Nov; 47(44):11390-2. PubMed ID: 18847220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor.
    Wang Y; Shin I; Li J; Liu A
    J Biol Chem; 2021 Oct; 297(4):101176. PubMed ID: 34508780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation.
    Njeri CW; Ellis HR
    Arch Biochem Biophys; 2014 Sep; 558():61-9. PubMed ID: 24929188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase.
    Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS
    Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probes of the catalytic site of cysteine dioxygenase.
    Chai SC; Bruyere JR; Maroney MJ
    J Biol Chem; 2006 Jun; 281(23):15774-9. PubMed ID: 16611641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Cys-Tyr cross-link of cysteine dioxygenase changes the optimal pH of the reaction without a structural change.
    Davies CG; Fellner M; Tchesnokov EP; Wilbanks SM; Jameson GN
    Biochemistry; 2014 Dec; 53(50):7961-8. PubMed ID: 25390690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine.
    Zhou Q; Hu M; Zhang W; Jiang L; Perrett S; Zhou J; Wang J
    Angew Chem Int Ed Engl; 2013 Jan; 52(4):1203-7. PubMed ID: 23197358
    [No Abstract]   [Full Text] [Related]  

  • 30. Spectroscopic Investigation of Cysteamine Dioxygenase.
    Fernandez RL; Dillon SL; Stipanuk MH; Fox BG; Brunold TC
    Biochemistry; 2020 Jul; 59(26):2450-2458. PubMed ID: 32510930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic and Spectroscopic Investigation of the Y157F and C93G/Y157F Variants of Cysteine Dioxygenase: Dissecting the Roles of the Second-Sphere Residues C93 and Y157.
    Miller JR; Schnorrenberg EC; Aschenbrener C; Fox BG; Brunold TC
    Biochemistry; 2024 Jul; 63(13):1684-1696. PubMed ID: 38885352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase.
    Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR
    Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH.
    Driggers CM; Cooley RB; Sankaran B; Hirschberger LL; Stipanuk MH; Karplus PA
    J Mol Biol; 2013 Sep; 425(17):3121-36. PubMed ID: 23747973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes.
    Aluri S; de Visser SP
    J Am Chem Soc; 2007 Dec; 129(48):14846-7. PubMed ID: 17994747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase.
    Li W; Pierce BS
    Arch Biochem Biophys; 2015 Jan; 565():49-56. PubMed ID: 25444857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate Specificity in Thiol Dioxygenases.
    Aloi S; Davies CG; Karplus PA; Wilbanks SM; Jameson GNL
    Biochemistry; 2019 May; 58(19):2398-2407. PubMed ID: 31045343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the Tyr-Cys cross-link to the active site properties of galactose oxidase.
    Rokhsana D; Howells AE; Dooley DM; Szilagyi RK
    Inorg Chem; 2012 Mar; 51(6):3513-24. PubMed ID: 22372371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, X-ray Structures, Electronic Properties, and O
    Fischer AA; Stracey N; Lindeman SV; Brunold TC; Fiedler AT
    Inorg Chem; 2016 Nov; 55(22):11839-11853. PubMed ID: 27801576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate and pH-Dependent Kinetic Profile of 3-Mercaptopropionate Dioxygenase from Pseudomonas aeruginosa.
    Fellner M; Aloi S; Tchesnokov EP; Wilbanks SM; Jameson GN
    Biochemistry; 2016 Mar; 55(9):1362-71. PubMed ID: 26878277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying proteins that can form tyrosine-cysteine crosslinks.
    Martinie RJ; Godakumbura PI; Porter EG; Divakaran A; Burkhart BJ; Wertz JT; Benson DE
    Metallomics; 2012 Oct; 4(10):1037-42, 1008. PubMed ID: 22797281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.