These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29752979)

  • 1. In-line agglomeration degree estimation in fluidized bed pellet coating processes using visual imaging.
    Mehle A; Kitak D; Podrekar G; Likar B; Tomaževič D
    Int J Pharm; 2018 Jul; 546(1-2):78-85. PubMed ID: 29752979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-line monitoring of pellet coating thickness growth by means of visual imaging.
    Oman Kadunc N; Sibanc R; Dreu R; Likar B; Tomaževič D
    Int J Pharm; 2014 Aug; 470(1-2):8-14. PubMed ID: 24792980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital imaging as a process analytical technology tool for fluid-bed pellet coating process.
    Mozina M; Tomazevic D; Leben S; Pernus F; Likar B
    Eur J Pharm Sci; 2010 Sep; 41(1):156-62. PubMed ID: 20541010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of pellet coating uniformity using a computer scanner.
    Šibanc R; Luštrik M; Dreu R
    Int J Pharm; 2017 Nov; 533(2):377-382. PubMed ID: 28606507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process.
    Lee MJ; Seo DY; Lee HE; Wang IC; Kim WS; Jeong MY; Choi GJ
    Int J Pharm; 2011 Jan; 403(1-2):66-72. PubMed ID: 21035529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-bed coater modifications and study of their influence on the coating process of pellets.
    Dreu R; Luštrik M; Perpar M; Zun I; Srčič S
    Drug Dev Ind Pharm; 2012 Apr; 38(4):501-11. PubMed ID: 21962028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inline acoustic monitoring to determine fluidized bed performance during pharmaceutical coating.
    Carter A; Briens L
    Int J Pharm; 2018 Oct; 549(1-2):293-298. PubMed ID: 30063939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.
    Liu R; Li L; Yin W; Xu D; Zang H
    Int J Pharm; 2017 Sep; 530(1-2):308-315. PubMed ID: 28743552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying efficiency and particle movement in coating--impact on particle agglomeration and yield.
    Tang ES; Wang L; Liew CV; Chan LW; Heng PW
    Int J Pharm; 2008 Feb; 350(1-2):172-80. PubMed ID: 17942252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of agglomeration in fluidized bed coating. III. Hofmeister series in suppression of particle agglomeration.
    Nakano T; Yuasa H; Kanaya Y
    Pharm Res; 1999 Oct; 16(10):1616-20. PubMed ID: 10554106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solidification of carvedilol loaded SMEDDS by swirling fluidized bed pellet coating.
    Mandić J; Luštrik M; Vrečer F; Gašperlin M; Zvonar Pobirk A
    Int J Pharm; 2019 Jul; 566():89-100. PubMed ID: 31129345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.
    Avalle P; Pollitt MJ; Bradley K; Cooper B; Pearce G; Djemai A; Fitzpatrick S
    Eur J Pharm Biopharm; 2014 Jul; 87(2):244-51. PubMed ID: 24503256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applicability of image analysis to support QbD driven development of pellets.
    Aničić N; Smrdel P; Kitak D; Morožin T; Jaklič M; Usenik P; Vidovič S
    Drug Dev Ind Pharm; 2021 Nov; 47(11):1794-1808. PubMed ID: 35389314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the applicability of in-line measurements in the monitoring of the pellet coating process.
    Hudovornik G; Korasa K; Vrečer F
    Eur J Pharm Sci; 2015 Jul; 75():160-8. PubMed ID: 25933718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preparation of the sustained release metformin hydrochloride microcapsules by the Wurster fluidized bed.
    Cao J; Liu H; Pan W; Sun C; Feng Y; Zhong H; Shi SS; He Y
    Pak J Pharm Sci; 2014 Jul; 27(4):779-84. PubMed ID: 25015440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of swirling airflow to enhance coating performance of bottom spray fluid bed coaters.
    Heng PW; Chan LW; Tang ES
    Int J Pharm; 2006 Dec; 327(1-2):26-35. PubMed ID: 16920294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of agglomeration in fluidized bed coating. II. Measurement of mist size in a fluidized bed chamber and effect of sodium chloride addition on mist size.
    Yuasa H; Nakano T; Kanaya Y
    Int J Pharm; 1999 Feb; 178(1):1-10. PubMed ID: 10205620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Line Film Coating Thickness Estimation of Minitablets in a Fluid-Bed Coating Equipment.
    Podrekar G; Kitak D; Mehle A; Lavrič Z; Likar B; Tomaževič D; Dreu R
    AAPS PharmSciTech; 2018 Nov; 19(8):3440-3453. PubMed ID: 30280359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed.
    Alshihabi F; Vandamme T; Betz G
    Pharm Dev Technol; 2013 Feb; 18(1):73-84. PubMed ID: 22035287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets.
    Korasa K; Hudovornik G; Vrečer F
    Eur J Pharm Sci; 2016 Oct; 93():484-92. PubMed ID: 27562707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.