These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 29753048)
1. Grouped gene selection and multi-classification of acute leukemia via new regularized multinomial regression. Li J; Wang Y; Jiang T; Xiao H; Song X Gene; 2018 Aug; 667():18-24. PubMed ID: 29753048 [TBL] [Abstract][Full Text] [Related]
2. A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation. Wang HQ; Huang DS Biotechnol Lett; 2005 Apr; 27(8):597-603. PubMed ID: 15973495 [TBL] [Abstract][Full Text] [Related]
3. Identification of new markers discriminating between myeloid and lymphoid acute leukemia. Haouas H; Haouas S; Uzan G; Hafsia A Hematology; 2010 Aug; 15(4):193-203. PubMed ID: 20670477 [TBL] [Abstract][Full Text] [Related]
4. Acute leukemia: subtype discovery and prediction of outcome by gene expression profiling. Downing JR Verh Dtsch Ges Pathol; 2003; 87():66-71. PubMed ID: 16888896 [TBL] [Abstract][Full Text] [Related]
5. A Ranking Approach for Probe Selection and Classification of Microarray Data with Artificial Neural Networks. Faria AW; da Silva AM; de Souza Rodrigues T; Costa MA; Braga AP J Comput Biol; 2015 Oct; 22(10):953-61. PubMed ID: 26418055 [TBL] [Abstract][Full Text] [Related]
6. Adaptive multinomial regression with overlapping groups for multi-class classification of lung cancer. Li J; Wang Y; Song X; Xiao H Comput Biol Med; 2018 Sep; 100():1-9. PubMed ID: 29957558 [TBL] [Abstract][Full Text] [Related]
7. Identification of similarities and differences between myeloid and lymphoid acute leukemias using a gene-gene interaction network. Chen J; Huang C; Zhu Y; Dong L; Cao W; Sun L; Sun H; Wan D; Liu Y; Zhang Z; Wang C Pathol Res Pract; 2015 Oct; 211(10):789-96. PubMed ID: 26296916 [TBL] [Abstract][Full Text] [Related]
8. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Chow ML; Moler EJ; Mian IS Physiol Genomics; 2001 Mar; 5(2):99-111. PubMed ID: 11242594 [TBL] [Abstract][Full Text] [Related]
9. A combinational feature selection and ensemble neural network method for classification of gene expression data. Liu B; Cui Q; Jiang T; Ma S BMC Bioinformatics; 2004 Sep; 5():136. PubMed ID: 15450124 [TBL] [Abstract][Full Text] [Related]
10. Identification of gene expression profiles that segregate patients with childhood leukemia. Moos PJ; Raetz EA; Carlson MA; Szabo A; Smith FE; Willman C; Wei Q; Hunger SP; Carroll WL Clin Cancer Res; 2002 Oct; 8(10):3118-30. PubMed ID: 12374679 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization of acute leukemias by use of microarray technology. Kohlmann A; Schoch C; Schnittger S; Dugas M; Hiddemann W; Kern W; Haferlach T Genes Chromosomes Cancer; 2003 Aug; 37(4):396-405. PubMed ID: 12800151 [TBL] [Abstract][Full Text] [Related]
12. Unimodal transform of variables selected by interval segmentation purity for classification tree modeling of high-dimensional microarray data. Du W; Gu T; Tang LJ; Jiang JH; Wu HL; Shen GL; Yu RQ Talanta; 2011 Sep; 85(3):1689-94. PubMed ID: 21807240 [TBL] [Abstract][Full Text] [Related]
13. [microRNA expression in childhood acute granulocytic leukemia and its subtypes]. Luo XQ; Xu L; Ke ZY; Huang LB; Zhang XL; Zhang LD Zhonghua Zhong Liu Za Zhi; 2011 Nov; 33(11):831-5. PubMed ID: 22335948 [TBL] [Abstract][Full Text] [Related]
14. Genomic and transcriptomic profiles and in vitro resistance to mitoxantrone and idarubicin in pediatric acute leukemias. Laskowska J; Lewandowska-Bieniek J; Szczepanek J; Styczyński J; Tretyn A J Gene Med; 2016 Aug; 18(8):165-79. PubMed ID: 27280600 [TBL] [Abstract][Full Text] [Related]
15. Gene selection: a Bayesian variable selection approach. Lee KE; Sha N; Dougherty ER; Vannucci M; Mallick BK Bioinformatics; 2003 Jan; 19(1):90-7. PubMed ID: 12499298 [TBL] [Abstract][Full Text] [Related]
16. Accurate molecular classification of cancer using simple rules. Wang X; Gotoh O BMC Med Genomics; 2009 Oct; 2():64. PubMed ID: 19874631 [TBL] [Abstract][Full Text] [Related]
17. Optimal approach for classification of acute leukemia subtypes based on gene expression data. Cho JH; Lee D; Park JH; Kim K; Lee IB Biotechnol Prog; 2002; 18(4):847-54. PubMed ID: 12153320 [TBL] [Abstract][Full Text] [Related]
18. A sub-space greedy search method for efficient Bayesian Network inference. Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635 [TBL] [Abstract][Full Text] [Related]
19. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Golub TR; Slonim DK; Tamayo P; Huard C; Gaasenbeek M; Mesirov JP; Coller H; Loh ML; Downing JR; Caligiuri MA; Bloomfield CD; Lander ES Science; 1999 Oct; 286(5439):531-7. PubMed ID: 10521349 [TBL] [Abstract][Full Text] [Related]
20. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia. Lin XC; Liu XG; Zhang YM; Li N; Yang ZG; Fu WY; Lan LB; Zhang HT; Dai Y Int J Oncol; 2017 Feb; 50(2):671-683. PubMed ID: 28101583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]