These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 29753139)
1. A review on fabricating tissue scaffolds using vat photopolymerization. Chartrain NA; Williams CB; Whittington AR Acta Biomater; 2018 Jul; 74():90-111. PubMed ID: 29753139 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
3. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
4. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. Gupta D; Singh AK; Dravid A; Bellare J ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613 [TBL] [Abstract][Full Text] [Related]
5. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145 [TBL] [Abstract][Full Text] [Related]
6. Mechanical characterization of miniaturized 3D-printed hydroxyapatite parts obtained through vat photopolymerization: an experimental study. D'Andrea L; Gastaldi D; Baino F; Verné E; Saccomano G; D'Amico L; Longo E; Schwentenwein M; Vena P J Mech Behav Biomed Mater; 2023 May; 141():105760. PubMed ID: 36907141 [TBL] [Abstract][Full Text] [Related]
7. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Lakkala P; Munnangi SR; Bandari S; Repka M Int J Pharm X; 2023 Dec; 5():100159. PubMed ID: 36632068 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
9. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing. Bao Y Macromol Rapid Commun; 2022 Jul; 43(14):e2200202. PubMed ID: 35579565 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of large-scale scaffolds with microscale features using light sheet stereolithography. Madrid-Sánchez A; Duerr F; Nie Y; Thienpont H; Ottevaere H Int J Bioprint; 2023; 9(2):650. PubMed ID: 37065660 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related]
12. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
13. Stereolithography 3D printing technology in pharmaceuticals: a review. Deshmane S; Kendre P; Mahajan H; Jain S Drug Dev Ind Pharm; 2021 Sep; 47(9):1362-1372. PubMed ID: 34663145 [TBL] [Abstract][Full Text] [Related]
14. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. Zhang S; Vijayavenkataraman S; Lu WF; Fuh JYH J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1329-1351. PubMed ID: 30300964 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive Review on Fabricating Bioactive Ceramic Bone Scaffold Using Vat Photopolymerization. Liu M; Wang Y; Liu X; Wei Q; Bao C; Zhang K ACS Biomater Sci Eng; 2023 Jun; 9(6):3032-3057. PubMed ID: 37264613 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839 [TBL] [Abstract][Full Text] [Related]
17. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094 [TBL] [Abstract][Full Text] [Related]
19. Solvent-cast 3D printing of magnesium scaffolds. Dong J; Li Y; Lin P; Leeflang MA; van Asperen S; Yu K; Tümer N; Norder B; Zadpoor AA; Zhou J Acta Biomater; 2020 Sep; 114():497-514. PubMed ID: 32771594 [TBL] [Abstract][Full Text] [Related]
20. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]