BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29753190)

  • 1. What makes A. guillouiae SFC 500-1A able to co-metabolize phenol and Cr(VI)? A proteomic approach.
    Ontañon OM; Landi C; Carleo A; Gagliardi A; Bianchi L; González PS; Agostini E; Bini L
    J Hazard Mater; 2018 Jul; 354():215-224. PubMed ID: 29753190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A.
    Ontañon OM; González PS; Agostini E
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13014-23. PubMed ID: 25916475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach to study ultrastructural changes and adaptive strategies displayed by Acinetobacter guillouiae SFC 500-1A under simultaneous Cr(VI) and phenol treatment.
    Fernández M; Morales GM; Agostini E; González PS
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20390-20400. PubMed ID: 28707241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane Rigidity and Phosphatidic Acid (PtdOH) Signal: Two Important Events in Acinetobacter guillouiae SFC 500-1A Exposed to Chromium(VI) and Phenol.
    Fernandez M; Paulucci NS; Peppino Margutti M; Biasutti AM; Racagni GE; Villasuso AL; Agostini E; González PS
    Lipids; 2019 Sep; 54(9):557-570. PubMed ID: 31475368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis to unravel the biochemical mechanisms triggered by Bacillus toyonensis SFC 500-1E under chromium(VI) and phenol stress.
    Fernandez M; Callegari EA; Paez MD; González PS; Agostini E
    Biometals; 2023 Oct; 36(5):1081-1108. PubMed ID: 37209221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of simultaneous Cr(VI) and phenol removal by an immobilised bacterial consortium and characterisation of biodegradation products.
    Ontañon OM; González PS; Barros GG; Agostini E
    N Biotechnol; 2017 Jul; 37(Pt B):172-179. PubMed ID: 28212869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of simultaneous removal of Cr (VI) and phenol by a native bacterial consortium: its use for bioaugmentation of co-polluted effluents.
    Ontañon OM; González PS; Agostini E
    J Appl Microbiol; 2015 Oct; 119(4):1011-22. PubMed ID: 26218448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system.
    Bhattacharya A; Gupta A; Kaur A; Malik D
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9829-41. PubMed ID: 25062955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biohybrid membranes for effective bacterial vehiculation and simultaneous removal of hexavalent chromium (CrVI) and phenol.
    Pereira PP; Fernandez M; Cimadoro J; González PS; Morales GM; Goyanes S; Agostini E
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):827-838. PubMed ID: 33394154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E.
    Ontañon OM; Fernandez M; Agostini E; González PS
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16111-16120. PubMed ID: 29594905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress responses of Acinetobacter strain Y during phenol degradation.
    Lin J
    Arch Microbiol; 2017 Mar; 199(2):365-375. PubMed ID: 27771745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of pyridine by one Rhodococcus strain in the presence of chromium (VI) or phenol.
    Sun JQ; Xu L; Tang YQ; Chen FM; Liu WQ; Wu XL
    J Hazard Mater; 2011 Jul; 191(1-3):62-8. PubMed ID: 21592659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095.
    Song H; Liu Y; Xu W; Zeng G; Aibibu N; Xu L; Chen B
    Bioresour Technol; 2009 Nov; 100(21):5079-84. PubMed ID: 19541478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual bioremediation of phenol and Cr(VI) by mixed microbial cultures in the presence of molasses.
    Kiliç NK; Dönmez G
    Water Sci Technol; 2017 Jun; 75(12):2883-2890. PubMed ID: 28659528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomics reveal the impact of OmcA/MtrC deletion on Shewanella oneidensis MR-1 in response to hexavalent chromium exposure.
    Wang C; Chen J; Hu WJ; Liu JY; Zheng HL; Zhao F
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9735-47. PubMed ID: 25341401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.
    Zakaria ZA; Zakaria Z; Surif S; Ahmad WA
    J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of chromium by novel strains Enterobacter aerogenes T2 and Acinetobacter sp. PD 12 S2.
    Panda J; Sarkar P
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1809-17. PubMed ID: 22203402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biodegradation of phenol under Cr(VI) stress by microbial collaboration and potential application of machine learning for phenol biodegradation.
    Bing W; Li X; Liang M; Zhou X; Zhang J; Liang J
    Water Sci Technol; 2024 May; 89(9):2384-2395. PubMed ID: 38747955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of chromium (VI) reduction and phenol biodegradation by Pseudomonas sp. JF122.
    Zhou B
    Pak J Pharm Sci; 2014 Nov; 27(6 Suppl):2047-51. PubMed ID: 25410071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous chromium(VI) reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance.
    Nkhalambayausi-Chirwa EM; Wang YT
    Water Res; 2001 Jun; 35(8):1921-32. PubMed ID: 11337838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.