BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29753645)

  • 1. Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress.
    Christodoulou D; Link H; Fuhrer T; Kochanowski K; Gerosa L; Sauer U
    Cell Syst; 2018 May; 6(5):569-578.e7. PubMed ID: 29753645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reserve Flux Capacity in the Pentose Phosphate Pathway by NADPH Binding Is Conserved across Kingdoms.
    Christodoulou D; Kuehne A; Estermann A; Fuhrer T; Lang P; Sauer U
    iScience; 2019 Sep; 19():1133-1144. PubMed ID: 31536961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma.
    Lucarelli G; Galleggiante V; Rutigliano M; Sanguedolce F; Cagiano S; Bufo P; Lastilla G; Maiorano E; Ribatti D; Giglio A; Serino G; Vavallo A; Bettocchi C; Selvaggi FP; Battaglia M; Ditonno P
    Oncotarget; 2015 May; 6(15):13371-86. PubMed ID: 25945836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bcl-x
    Pfeiffer A; Schneider J; Bueno D; Dolga A; Voss TD; Lewerenz J; Wüllner V; Methner A
    Free Radic Biol Med; 2017 Nov; 112():350-359. PubMed ID: 28807815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux.
    Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F
    J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803.
    Ueda K; Nakajima T; Yoshikawa K; Toya Y; Matsuda F; Shimizu H
    J Biosci Bioeng; 2018 Jul; 126(1):38-43. PubMed ID: 29499995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli.
    Kim YM; Cho HS; Jung GY; Park JM
    Biotechnol Bioeng; 2011 Dec; 108(12):2941-6. PubMed ID: 21732330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress.
    Gelman SJ; Naser F; Mahieu NG; McKenzie LD; Dunn GP; Chheda MG; Patti GJ
    Cell Rep; 2018 Jan; 22(2):512-522. PubMed ID: 29320744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress.
    Ghosh AK; Sardar AH; Mandal A; Saini S; Abhishek K; Kumar A; Purkait B; Singh R; Das S; Mukhopadhyay R; Roy S; Das P
    FASEB J; 2015 May; 29(5):2081-98. PubMed ID: 25690656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benzo[a]pyrene-induced metabolic shift from glycolysis to pentose phosphate pathway in the human bladder cancer cell line RT4.
    Verma N; Pink M; Boland S; Rettenmeier AW; Schmitz-Spanke S
    Sci Rep; 2017 Aug; 7(1):9773. PubMed ID: 28851999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.
    Sandoval JM; Arenas FA; Vásquez CC
    PLoS One; 2011; 6(9):e25573. PubMed ID: 21984934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells.
    Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.
    Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME
    Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373
    [