These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 29753645)
1. Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress. Christodoulou D; Link H; Fuhrer T; Kochanowski K; Gerosa L; Sauer U Cell Syst; 2018 May; 6(5):569-578.e7. PubMed ID: 29753645 [TBL] [Abstract][Full Text] [Related]
2. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
3. Reserve Flux Capacity in the Pentose Phosphate Pathway by NADPH Binding Is Conserved across Kingdoms. Christodoulou D; Kuehne A; Estermann A; Fuhrer T; Lang P; Sauer U iScience; 2019 Sep; 19():1133-1144. PubMed ID: 31536961 [TBL] [Abstract][Full Text] [Related]
4. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Lucarelli G; Galleggiante V; Rutigliano M; Sanguedolce F; Cagiano S; Bufo P; Lastilla G; Maiorano E; Ribatti D; Giglio A; Serino G; Vavallo A; Bettocchi C; Selvaggi FP; Battaglia M; Ditonno P Oncotarget; 2015 May; 6(15):13371-86. PubMed ID: 25945836 [TBL] [Abstract][Full Text] [Related]
6. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux. Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470 [TBL] [Abstract][Full Text] [Related]
7. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803. Ueda K; Nakajima T; Yoshikawa K; Toya Y; Matsuda F; Shimizu H J Biosci Bioeng; 2018 Jul; 126(1):38-43. PubMed ID: 29499995 [TBL] [Abstract][Full Text] [Related]
8. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Kim YM; Cho HS; Jung GY; Park JM Biotechnol Bioeng; 2011 Dec; 108(12):2941-6. PubMed ID: 21732330 [TBL] [Abstract][Full Text] [Related]
9. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress. Gelman SJ; Naser F; Mahieu NG; McKenzie LD; Dunn GP; Chheda MG; Patti GJ Cell Rep; 2018 Jan; 22(2):512-522. PubMed ID: 29320744 [TBL] [Abstract][Full Text] [Related]
11. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. Ghosh AK; Sardar AH; Mandal A; Saini S; Abhishek K; Kumar A; Purkait B; Singh R; Das S; Mukhopadhyay R; Roy S; Das P FASEB J; 2015 May; 29(5):2081-98. PubMed ID: 25690656 [TBL] [Abstract][Full Text] [Related]
12. Benzo[a]pyrene-induced metabolic shift from glycolysis to pentose phosphate pathway in the human bladder cancer cell line RT4. Verma N; Pink M; Boland S; Rettenmeier AW; Schmitz-Spanke S Sci Rep; 2017 Aug; 7(1):9773. PubMed ID: 28851999 [TBL] [Abstract][Full Text] [Related]
13. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Aurora AB; Khivansara V; Leach A; Gill JG; Martin-Sandoval M; Yang C; Kasitinon SY; Bezwada D; Tasdogan A; Gu W; Mathews TP; Zhao Z; DeBerardinis RJ; Morrison SJ Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110412 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490 [TBL] [Abstract][Full Text] [Related]
15. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373 [TBL] [Abstract][Full Text] [Related]
16. Redirection of the Glycolytic Flux Enhances Isoprenoid Production in Saccharomyces cerevisiae. Kwak S; Yun EJ; Lane S; Oh EJ; Kim KH; Jin YS Biotechnol J; 2020 Feb; 15(2):e1900173. PubMed ID: 31466140 [TBL] [Abstract][Full Text] [Related]
17. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth. Wilkes RA; Waldbauer J; Aristilde L mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058 [TBL] [Abstract][Full Text] [Related]
18. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli. Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004 [TBL] [Abstract][Full Text] [Related]
19. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems. Barcia-Vieitez R; Ramos-Martínez JI IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203 [TBL] [Abstract][Full Text] [Related]
20. ROS and pentose phosphate pathway: mathematical modelling of the metabolic regulation in response to xenobiotic-induced oxidative stress and the proposed Impact of the gluconate shunt. Schittenhelm D; Neuss-Radu M; Verma N; Pink M; Schmitz-Spanke S Free Radic Res; 2019 Oct; 53(9-10):979-992. PubMed ID: 31476923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]