These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 29753888)
1. Mobility and satisfaction with a microprocessor-controlled knee in moderately active amputees: A multi-centric randomized crossover trial. Lansade C; Vicaut E; Paysant J; Ménager D; Cristina MC; Braatz F; Domayer S; Pérennou D; Chiesa G Ann Phys Rehabil Med; 2018 Sep; 61(5):278-285. PubMed ID: 29753888 [TBL] [Abstract][Full Text] [Related]
2. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial. Jayaraman C; Mummidisetty CK; Albert MV; Lipschutz R; Hoppe-Ludwig S; Mathur G; Jayaraman A J Neuroeng Rehabil; 2021 May; 18(1):88. PubMed ID: 34034753 [TBL] [Abstract][Full Text] [Related]
3. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study. Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722 [TBL] [Abstract][Full Text] [Related]
4. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
5. The Kenevo microprocessor-controlled prosthetic knee compared with non-microprocessor-controlled knees in individuals older than 65 years in Sweden: A cost-effectiveness and budget-impact analysis. Kuhlmann A; Hagberg K; Kamrad I; Ramstrand N; Seidinger S; Berg H Prosthet Orthot Int; 2022 Oct; 46(5):414-424. PubMed ID: 35511441 [TBL] [Abstract][Full Text] [Related]
6. Comparison of mobility and user satisfaction between a microprocessor knee and a standard prosthetic knee: a summary of seven single-subject trials. Howard CL; Wallace C; Perry B; Stokic DS Int J Rehabil Res; 2018 Mar; 41(1):63-73. PubMed ID: 29293160 [TBL] [Abstract][Full Text] [Related]
7. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review. Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023 [TBL] [Abstract][Full Text] [Related]
8. Comparison of patient-reported and functional outcomes following transition from mechanical to microprocessor knee in the low-activity user with a unilateral transfemoral amputation. Davie-Smith F; Carse B Prosthet Orthot Int; 2021 Jun; 45(3):198-204. PubMed ID: 34016872 [TBL] [Abstract][Full Text] [Related]
9. Survey of transfemoral amputee experience and priorities for the user-centered design of powered robotic transfemoral prostheses. Fanciullacci C; McKinney Z; Monaco V; Milandri G; Davalli A; Sacchetti R; Laffranchi M; De Michieli L; Baldoni A; Mazzoni A; Paternò L; Rosini E; Reale L; Trecate F; Crea S; Vitiello N; Gruppioni E J Neuroeng Rehabil; 2021 Dec; 18(1):168. PubMed ID: 34863213 [TBL] [Abstract][Full Text] [Related]
10. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
11. Exploring the interaction of knee and ankle component use on mobility test performance in people with unilateral transfemoral amputation. Barnett CT; Hughes LD; Sullivan AE; Strutzenberger G; Levick JL; Bisele M; De Asha AR Prosthet Orthot Int; 2021 Dec; 45(6):470-476. PubMed ID: 34538818 [TBL] [Abstract][Full Text] [Related]
12. Stability and Falls Evaluations in AMPutees (SAFE-AMP 1): Microprocessor knee technology reduces odds of incurring an injurious fall for individuals with diabetic/dysvascular amputation. Wurdeman SR; Miller TA; Stevens PM; Campbell JH Assist Technol; 2023 May; 35(3):205-210. PubMed ID: 34870561 [TBL] [Abstract][Full Text] [Related]
13. Mobility analysis of amputees (MAAT 3): Matching individuals based on comorbid health reveals improved function for above-knee prosthesis users with microprocessor knee technology. Wurdeman SR; Stevens PM; Campbell JH Assist Technol; 2020 Sep; 32(5):236-242. PubMed ID: 30592436 [TBL] [Abstract][Full Text] [Related]
14. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Kaufman KR; Bernhardt KA; Symms K Clin Biomech (Bristol); 2018 Oct; 58():116-122. PubMed ID: 30077128 [TBL] [Abstract][Full Text] [Related]
15. Economic benefits of microprocessor controlled prosthetic knees: a modeling study. Chen C; Hanson M; Chaturvedi R; Mattke S; Hillestad R; Liu HH J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):62. PubMed ID: 30255802 [TBL] [Abstract][Full Text] [Related]
16. Perceived self-efficacy and specific self-reported outcomes in persons with lower-limb amputation using a non-microprocessor-controlled versus a microprocessor-controlled prosthetic knee. Möller S; Hagberg K; Samulesson K; Ramstrand N Disabil Rehabil Assist Technol; 2018 Apr; 13(3):220-225. PubMed ID: 28366038 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Fuenzalida Squella SA; Kannenberg A; Brandão Benetti  Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574 [TBL] [Abstract][Full Text] [Related]
18. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685 [TBL] [Abstract][Full Text] [Related]
19. Influence of advanced prosthetic knee joints on perceived performance and everyday life activity level of low-functional persons with a transfemoral amputation or knee disarticulation. Theeven PJ; Hemmen B; Geers RP; Smeets RJ; Brink PR; Seelen HA J Rehabil Med; 2012 May; 44(5):454-61. PubMed ID: 22549656 [TBL] [Abstract][Full Text] [Related]
20. Impact of C-LEG on mobility, satisfaction and quality of life in a multicenter cohort of femoral amputees. Lansade C; Chiesa G; Paysant J; Vicaut E; Cristina MC; Ménager D Ann Phys Rehabil Med; 2021 Jan; 64(1):101386. PubMed ID: 32360291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]