These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 29753888)
21. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus. Kuhlmann A; Krüger H; Seidinger S; Hahn A Eur J Health Econ; 2020 Apr; 21(3):437-449. PubMed ID: 31897813 [TBL] [Abstract][Full Text] [Related]
22. Degree of Safety Against Falls Provided by 4 Different Prosthetic Knee Types in People With Transfemoral Amputation: A Retrospective Observational Study. Palumbo P; Randi P; Moscato S; Davalli A; Chiari L Phys Ther; 2022 Apr; 102(4):. PubMed ID: 35079822 [TBL] [Abstract][Full Text] [Related]
23. Impact of microprocessor prosthetic knee on mobility and quality of life in patients with lower limb amputation: a systematic review of the literature. Thibaut A; Beaudart C; Maertens DE Noordhout B; Geers S; Kaux JF; Pelzer D Eur J Phys Rehabil Med; 2022 Jun; 58(3):452-461. PubMed ID: 35148043 [TBL] [Abstract][Full Text] [Related]
24. The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis. Hahn A; Bueschges S; Prager M; Kannenberg A Disabil Rehabil; 2022 Dec; 44(24):7349-7367. PubMed ID: 34694952 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of gait outcomes for individuals with established unilateral transfemoral amputation following the provision of microprocessor controlled knees in the context of a clinical service. Carse B; Scott H; Brady L; Colvin J Prosthet Orthot Int; 2021 Jun; 45(3):254-261. PubMed ID: 34016870 [TBL] [Abstract][Full Text] [Related]
26. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114 [TBL] [Abstract][Full Text] [Related]
27. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: systematic review. Kannenberg A; Zacharias B; Pröbsting E J Rehabil Res Dev; 2014; 51(10):1469-96. PubMed ID: 25856664 [TBL] [Abstract][Full Text] [Related]
28. Kinetic adaptations of the intact limb in transfemoral amputees using a microprocessor prosthetic knee. Persine S; Leteneur S; Gillet C; Bassement J; Charlaté F; Simoneau-Buessinger E Gait Posture; 2024 Feb; 108():170-176. PubMed ID: 38100955 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519 [TBL] [Abstract][Full Text] [Related]
30. Quality of life, body image, and mobility in lower-limb amputees using high-tech prostheses: A pragmatic trial. Burçak B; Kesikburun B; Köseoğlu BF; Öken Ö; Doğan A Ann Phys Rehabil Med; 2021 Jan; 64(1):101405. PubMed ID: 32561506 [TBL] [Abstract][Full Text] [Related]
31. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees. Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182 [TBL] [Abstract][Full Text] [Related]
32. Physical performance and self-report outcomes associated with use of passive, adaptive, and active prosthetic knees in persons with unilateral, transfemoral amputation: Randomized crossover trial. Hafner BJ; Askew RL J Rehabil Res Dev; 2015; 52(6):677-700. PubMed ID: 26560243 [TBL] [Abstract][Full Text] [Related]
33. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259 [TBL] [Abstract][Full Text] [Related]
34. Effects of microprocessor-controlled prosthetic knees on self-reported mobility, quality of life, and psychological states in patients with transfemoral amputations. Şen Eİ; Aydın T; Buğdaycı D; Kesiktaş FN Acta Orthop Traumatol Turc; 2020 Sep; 54(5):502-506. PubMed ID: 33155559 [TBL] [Abstract][Full Text] [Related]
35. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking. Möller S; Rusaw D; Hagberg K; Ramstrand N Prosthet Orthot Int; 2019 Jun; 43(3):257-265. PubMed ID: 30375285 [TBL] [Abstract][Full Text] [Related]
36. Can microprocessor knees reduce the disparity in trips and falls risks between above and below knee prosthesis users? McGrath M; Gray LA; Rek B; Davies KC; Savage Z; McLean J; Stenson A; Zahedi S PLoS One; 2022; 17(9):e0271315. PubMed ID: 36054087 [TBL] [Abstract][Full Text] [Related]
37. Influence of a user-adaptive prosthetic knee on quality of life, balance confidence, and measures of mobility: a randomised cross-over trial. Prinsen EC; Nederhand MJ; Olsman J; Rietman JS Clin Rehabil; 2015 Jun; 29(6):581-91. PubMed ID: 25288047 [TBL] [Abstract][Full Text] [Related]
38. Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation? Aldridge Whitehead JM; Wolf EJ; Scoville CR; Wilken JM Clin Orthop Relat Res; 2014 Oct; 472(10):3093-101. PubMed ID: 24515402 [TBL] [Abstract][Full Text] [Related]
39. Effects of a microprocessor-controlled ankle-foot unit on energy expenditure, quality of life, and postural stability in persons with transtibial amputation: An unblinded, randomized, controlled, cross-over study. Colas-Ribas C; Martinet N; Audat G; Bruneau A; Paysant J; Abraham P Prosthet Orthot Int; 2022 Dec; 46(6):541-548. PubMed ID: 36515900 [TBL] [Abstract][Full Text] [Related]
40. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial. Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]