These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29753975)

  • 21. Comparing three Australian natural organic matter isolates to the Suwannee river standard: Reactivity, disinfection by-product yield, and removal by drinking water treatments.
    Watson K; Farré MJ; Knight N
    Sci Total Environ; 2019 Oct; 685():380-391. PubMed ID: 31176223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.
    Ufermann P; Petersen H; Exner M
    Int J Hyg Environ Health; 2011 Dec; 215(1):86-90. PubMed ID: 21900043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model.
    Abokifa AA; Yang YJ; Lo CS; Biswas P
    Water Res; 2016 Nov; 104():208-219. PubMed ID: 27525584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of copper(II) and copper oxides on THMs formation in copper pipe.
    Li B; Qu J; Liu H; Hu C
    Chemosphere; 2007 Aug; 68(11):2153-60. PubMed ID: 17363030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship of chlorine decay and THMs formation to NOM size.
    Gang D; Clevenger TE; Banerji SK
    J Hazard Mater; 2003 Jan; 96(1):1-12. PubMed ID: 12475475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An insight of disinfection by-product (DBP) formation by alternative disinfectants for swimming pool disinfection under tropical conditions.
    Yang L; Schmalz C; Zhou J; Zwiener C; Chang VW; Ge L; Wan MP
    Water Res; 2016 Sep; 101():535-546. PubMed ID: 27300590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water.
    Liu ZQ; Shah AD; Salhi E; Bolotin J; von Gunten U
    Water Res; 2018 Oct; 143():492-502. PubMed ID: 29986257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of iodinated trihalomethanes during chlorination of amino acid in waters.
    Li C; Lin Q; Dong F; Li Y; Luo F; Zhang K
    Chemosphere; 2019 Feb; 217():355-363. PubMed ID: 30419389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time.
    Sakai H; Tokuhara S; Murakami M; Kosaka K; Oguma K; Takizawa S
    Water Res; 2016 Jan; 88():661-670. PubMed ID: 26575475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of disinfection by-products in indoor swimming pool water: the contribution from filling water natural organic matter and swimmer body fluids.
    Kanan A; Karanfil T
    Water Res; 2011 Jan; 45(2):926-32. PubMed ID: 20934199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study on pipe material's influence on chlorine dioxide drinking water disinfection].
    He T; Yue Y; Ling B; Zhang L
    Wei Sheng Yan Jiu; 2010 Sep; 39(5):621-3. PubMed ID: 21033446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A reactive species model for chlorine decay and THM formation under rechlorination conditions.
    Boccelli DL; Tryby ME; Uber JG; Summers RS
    Water Res; 2003 Jun; 37(11):2654-66. PubMed ID: 12753843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of advanced treatment on chlorine decay in metallic pipes.
    Rossman LA
    Water Res; 2006 Jul; 40(13):2493-502. PubMed ID: 16806395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.
    Hua P; Vasyukova E; Uhl W
    Water Res; 2015 May; 75():109-22. PubMed ID: 25765169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective removal of dissolved organic matter affects the production and speciation of disinfection byproducts.
    Williams CJ; Conrad D; Kothawala DN; Baulch HM
    Sci Total Environ; 2019 Feb; 652():75-84. PubMed ID: 30359804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.
    Abdullah AM; Hussona Sel-D
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7152-66. PubMed ID: 23852584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-route trihalomethane exposure in households using municipal tap water treated with chlorine or ozone-chlorine.
    Jo WK; Kwon KD; Dong JI; Chung Y
    Sci Total Environ; 2005 Mar; 339(1-3):143-52. PubMed ID: 15740765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of tannin-based coagulant and chlorine dioxide in treating brewing water: reduction of trihalomethanes and impact on physicochemical and sensory quality.
    Caon A; Conte G; Skoronski E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(10):858-868. PubMed ID: 36111665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.