BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 29754220)

  • 1. Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria.
    Sánchez-Pascuala A; Nikel PI; de Lorenzo V
    Methods Mol Biol; 2018; 1772():3-24. PubMed ID: 29754220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refactoring the Embden-Meyerhof-Parnas Pathway as a Whole of Portable GlucoBricks for Implantation of Glycolytic Modules in Gram-Negative Bacteria.
    Sánchez-Pascuala A; de Lorenzo V; Nikel PI
    ACS Synth Biol; 2017 May; 6(5):793-805. PubMed ID: 28121421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida.
    Sánchez-Pascuala A; Fernández-Cabezón L; de Lorenzo V; Nikel PI
    Metab Eng; 2019 Jul; 54():200-211. PubMed ID: 31009747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways.
    Pastor JM; Borges N; Pagán JP; Castaño-Cerezo S; Csonka LN; Goodner BW; Reynolds KA; Gonçalves LG; Argandoña M; Nieto JJ; Vargas C; Bernal V; Cánovas M
    Microb Cell Fact; 2019 Aug; 18(1):134. PubMed ID: 31409414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and evolution of an
    Lin PP; Jaeger AJ; Wu TY; Xu SC; Lee AS; Gao F; Chen PW; Liao JC
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3538-3546. PubMed ID: 29555759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative carbohydrate pathways - enzymes, functions and engineering.
    Kopp D; Sunna A
    Crit Rev Biotechnol; 2020 Nov; 40(7):895-912. PubMed ID: 32654530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors.
    Martínez-García E; Aparicio T; de Lorenzo V; Nikel PI
    Methods Mol Biol; 2017; 1498():273-293. PubMed ID: 27709582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.
    Komati Reddy G; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.
    Seol E; Sekar BS; Raj SM; Park S
    Biotechnol J; 2016 Feb; 11(2):249-56. PubMed ID: 26581029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress.
    Chavarría M; Nikel PI; Pérez-Pantoja D; de Lorenzo V
    Environ Microbiol; 2013 Jun; 15(6):1772-85. PubMed ID: 23301697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance.
    Jojima T; Inui M
    Bioengineered; 2015; 6(6):328-34. PubMed ID: 26513591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism.
    Ronimus RS; Morgan HW
    Archaea; 2003 Oct; 1(3):199-221. PubMed ID: 15803666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome sequences of Arthrobacter spp. that use a modified sulfoglycolytic Embden-Meyerhof-Parnas pathway.
    Kaur A; van der Peet PL; Mui JW; Herisse M; Pidot S; Williams SJ
    Arch Microbiol; 2022 Feb; 204(3):193. PubMed ID: 35201431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.
    Martínez I; El-Said Mohamed M; Santos VE; García JL; García-Ochoa F; Díaz E
    J Biotechnol; 2017 Nov; 262():47-55. PubMed ID: 28947364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria.
    Benedetti I; Nikel PI; de Lorenzo V
    Data Brief; 2016 Mar; 6():738-44. PubMed ID: 26870759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New transposon tools tailored for metabolic engineering of gram-negative microbial cell factories.
    Martínez-García E; Aparicio T; de Lorenzo V; Nikel PI
    Front Bioeng Biotechnol; 2014; 2():46. PubMed ID: 25389526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale 13C flux profiling reveals conservation of the Entner-Doudoroff pathway as a glycolytic strategy among marine bacteria that use glucose.
    Klingner A; Bartsch A; Dogs M; Wagner-Döbler I; Jahn D; Simon M; Brinkhoff T; Becker J; Wittmann C
    Appl Environ Microbiol; 2015 Apr; 81(7):2408-22. PubMed ID: 25616803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas.
    Luengo JM; Olivera ER
    Methods Mol Biol; 2017; 1645():109-142. PubMed ID: 28710624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors.
    Nikel PI; de Lorenzo V
    J Biotechnol; 2013 Jan; 163(2):143-54. PubMed ID: 22609234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.