BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29754300)

  • 1. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.
    Teow YH; Nordin NI; Mohammad AW
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33747-33757. PubMed ID: 29754300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell.
    García JR; Sedran U; Zaini MAA; Zakaria ZA
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5076-5085. PubMed ID: 28391459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylene blue removal by carbonized textile sludge-based adsorbent.
    Rahman A; Kishimoto N; Urabe T; Ikeda K
    Water Sci Technol; 2017 Dec; 76(11-12):3126-3134. PubMed ID: 29210698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective Application of Palm Oil Mill Boiler Ash as a Biosorbent: Effect of Microwave Irradiation and Palm Oil Mill Effluent Decolorization by Adsorption.
    Hamzah MH; Ahmad Asri MF; Che Man H; Mohammed A
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31533308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.
    Liew WL; Kassim MA; Muda K; Loh SK; Affam AC
    J Environ Manage; 2015 Feb; 149():222-35. PubMed ID: 25463585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of metal industry solid waste as an adsorbent for adsorption of anionic and cationic dyes from aqueous solution through the batch and continuous study.
    Kushwaha P; Agarwal M
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):46748-46765. PubMed ID: 36723835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption study of Methylene blue dye: an effluents from local textile industry using
    Mustapha OR; Osobamiro TM; Sanyaolu NO; Alabi OM
    Int J Phytoremediation; 2023; 25(10):1348-1358. PubMed ID: 36597778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Textile dye degradation using nano zero valent iron: A review.
    Raman CD; Kanmani S
    J Environ Manage; 2016 Jul; 177():341-55. PubMed ID: 27115482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue.
    Durrani WZ; Nasrullah A; Khan AS; Fagieh TM; Bakhsh EM; Akhtar K; Khan SB; Din IU; Khan MA; Bokhari A
    Chemosphere; 2022 Sep; 302():134793. PubMed ID: 35525452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physico-chemical adsorption of cationic dyes using adsorbent synthesis via hydrochloric acid treatment and subcritical method from palm leaf biomass waste.
    Ozdemir NC; Bilici Z; Yabalak E; Dizge N; Balakrishnan D; Khoo KS; Show PL
    Chemosphere; 2023 Oct; 339():139558. PubMed ID: 37467863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of ZnO-nanorod-based materials for antibacterial, antifungal activities, DNA cleavage and efficient ultrasound-assisted dyes adsorption.
    Bazrafshan AA; Ghaedi M; Hajati S; Naghiha R; Asfaram A
    Ecotoxicol Environ Saf; 2017 Aug; 142():330-337. PubMed ID: 28437724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings.
    Bediako JK; Lin S; Sarkar AK; Zhao Y; Choi JW; Song MH; Cho CW; Yun YS
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):1053-1068. PubMed ID: 31814075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant.
    Fito J; Abewaa M; Mengistu A; Angassa K; Ambaye AD; Moyo W; Nkambule T
    Sci Rep; 2023 Apr; 13(1):5427. PubMed ID: 37012298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O.
    Ghaedi M; Pakniat M; Mahmoudi Z; Hajati S; Sahraei R; Daneshfar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():402-9. PubMed ID: 24412794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue.
    Alamin NU; Khan AS; Nasrullah A; Iqbal J; Ullah Z; Din IU; Muhammad N; Khan SZ
    Int J Biol Macromol; 2021 Apr; 176():233-243. PubMed ID: 33549668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of shell-based agricultural waste adsorbents for removing dyes: A review.
    Paul Nayagam JO; Prasanna K
    Chemosphere; 2022 Mar; 291(Pt 1):132737. PubMed ID: 34742768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent.
    Mohammed RR; Chong MF
    J Environ Manage; 2014 Jan; 132():237-49. PubMed ID: 24321284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-based materials production and application in textile wastewater treatment: color removal and phytotoxicity using
    do Nascimento GFO; da Costa GRB; de Araújo CMB; Ghislandi MG; da Motta Sobrinho MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(1):97-106. PubMed ID: 31533527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical review and bibliometric analysis of methylene blue adsorption using leaves.
    Kusuma HS; Christa Jaya DE; Illiyanasafa N; Ikawati KL; Kurniasari E; Darmokoesoemo H; Amenaghawon AN
    Chemosphere; 2024 May; 356():141867. PubMed ID: 38583535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.