BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29754326)

  • 1. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping.
    Cai Z; Cheng Y; Xian P; Ma Q; Wen K; Xia Q; Zhang G; Nian H
    Theor Appl Genet; 2018 Aug; 131(8):1715-1728. PubMed ID: 29754326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress.
    Zhang D; Song H; Cheng H; Hao D; Wang H; Kan G; Jin H; Yu D
    PLoS Genet; 2014 Jan; 10(1):e1004061. PubMed ID: 24391523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress.
    Zhang D; Zhang H; Chu S; Li H; Chi Y; Triebwasser-Freese D; Lv H; Yu D
    Plant Mol Biol; 2017 Jan; 93(1-2):137-150. PubMed ID: 27815671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana.
    Kong Y; Li X; Ma J; Li W; Yan G; Zhang C
    Plant Cell Rep; 2014 Apr; 33(4):655-67. PubMed ID: 24595918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean.
    Zhang H; Yang Y; Sun C; Liu X; Lv L; Hu Z; Yu D; Zhang D
    Plant Cell Environ; 2020 Sep; 43(9):2080-2094. PubMed ID: 32515009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus.
    Yang M; Ding G; Shi L; Feng J; Xu F; Meng J
    Theor Appl Genet; 2010 Jun; 121(1):181-93. PubMed ID: 20217384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping and cloning of low phosphorus tolerance genes in soybeans.
    Zhang D; Song HN; Cheng H; Yu DY
    Yi Chuan; 2015 Apr; 37(4):336-343. PubMed ID: 25881699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system.
    Xie J; Zhou J; Wang X; Liao H
    J Integr Plant Biol; 2015 May; 57(5):477-85. PubMed ID: 25048220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The purple acid phosphatase GmPAP17 predominantly enhances phosphorus use efficiency in soybean.
    Xu H; Zhang H; Fan Y; Wang R; Cui R; Liu X; Chu S; Jiao Y; Zhang X; Zhang D
    Plant Sci; 2022 Jul; 320():111283. PubMed ID: 35643608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities.
    Shi L; Shi T; Broadley MR; White PJ; Long Y; Meng J; Xu F; Hammond JP
    Ann Bot; 2013 Jul; 112(2):381-9. PubMed ID: 23172414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean.
    Wang X; Wang Y; Tian J; Lim BL; Yan X; Liao H
    Plant Physiol; 2009 Sep; 151(1):233-40. PubMed ID: 19587103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis and fine mapping of phosphorus efficiency locus 1 (PE1) in soybean.
    Yang Y; Tong Y; Li X; He Y; Xu R; Liu D; Yang Q; Lv H; Liao H
    Theor Appl Genet; 2019 Oct; 132(10):2847-2858. PubMed ID: 31317236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean.
    Li C; Li C; Zhang H; Liao H; Wang X
    Physiol Plant; 2017 Feb; 159(2):215-227. PubMed ID: 27762446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean.
    Liu X; Yang Y; Wang R; Cui R; Xu H; Sun C; Wang J; Zhang H; Chen H; Zhang D
    Plant Sci; 2022 Feb; 315():111148. PubMed ID: 35067311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping and validation of a major QTL for primary root length of soybean seedlings grown in hydroponic conditions.
    Chen H; Kumawat G; Yan Y; Fan B; Xu D
    BMC Genomics; 2021 Feb; 22(1):132. PubMed ID: 33622237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression of an acid phosphatase gene and phosphate limitation leads to substantial production of chicoric acid in Echinacea purpurea transgenic hairy roots.
    Salmanzadeh M; Sabet MS; Moieni A; Homaee M
    Planta; 2019 Dec; 251(1):31. PubMed ID: 31823013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of loci and candidate gene GmSPX-RING1 responsible for phosphorus efficiency in soybean via genome-wide association analysis.
    Du W; Ning L; Liu Y; Zhang S; Yang Y; Wang Q; Chao S; Yang H; Huang F; Cheng H; Yu D
    BMC Genomics; 2020 Oct; 21(1):725. PubMed ID: 33076835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil.
    Bernardino KC; Pastina MM; Menezes CB; de Sousa SM; Maciel LS; Carvalho G; Guimarães CT; Barros BA; da Costa E Silva L; Carneiro PCS; Schaffert RE; Kochian LV; Magalhaes JV
    BMC Plant Biol; 2019 Feb; 19(1):87. PubMed ID: 30819116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean.
    Zhou J; Xie J; Liao H; Wang X
    Physiol Plant; 2014 Feb; 150(2):194-204. PubMed ID: 23773128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses.
    Guo W; Zhao J; Li X; Qin L; Yan X; Liao H
    Plant J; 2011 May; 66(3):541-52. PubMed ID: 21261763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.