These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29754486)

  • 21. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lithographically defined macroscale modulation of lateral fluidity and phase separation realized via patterned nanoporous silica-supported phospholipid bilayers.
    Kendall EL; Ngassam VN; Gilmore SF; Brinker CJ; Parikh AN
    J Am Chem Soc; 2013 Oct; 135(42):15718-21. PubMed ID: 24111800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of pit-spanning phospholipid bilayers on nanostructured silicon dioxide surfaces for studying biological membrane events.
    Pfeiffer I; Zäch M
    Methods Mol Biol; 2013; 991():113-25. PubMed ID: 23546664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Surface Charge on Cerium Oxide Nanoparticle Uptake and Translocation by Wheat (Triticum aestivum).
    Spielman-Sun E; Lombi E; Donner E; Howard D; Unrine JM; Lowry GV
    Environ Sci Technol; 2017 Jul; 51(13):7361-7368. PubMed ID: 28575574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of supported bilayers on silica substrates.
    Anderson TH; Min Y; Weirich KL; Zeng H; Fygenson D; Israelachvili JN
    Langmuir; 2009 Jun; 25(12):6997-7005. PubMed ID: 19354208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of modified silica nanoparticles on phase behavior and structure properties of DPPC monolayers.
    Ye X; Hao C; Yang J; Sun R
    Colloids Surf B Biointerfaces; 2018 Dec; 172():480-486. PubMed ID: 30199765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of nanotopography on phospholipid bilayer formation on silicon dioxide.
    Pfeiffer I; Seantier B; Petronis S; Sutherland D; Kasemo B; Zäch M
    J Phys Chem B; 2008 Apr; 112(16):5175-81. PubMed ID: 18370429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity.
    Wei X; Jiang W; Yu J; Ding L; Hu J; Jiang G
    J Hazard Mater; 2015 Apr; 287():217-24. PubMed ID: 25661168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid evaluation of gold nanoparticle-lipid membrane interactions using a lipid/polydiacetylene vesicle sensor.
    Gu C; Geng Y; Zheng F; Rotello VM
    Analyst; 2020 Apr; 145(8):3049-3055. PubMed ID: 32140698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture.
    Guzmán E; Ferrari M; Santini E; Liggieri L; Ravera F
    Colloids Surf B Biointerfaces; 2015 Dec; 136():971-80. PubMed ID: 26562189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation.
    Konduru NV; Murdaugh KM; Swami A; Jimenez RJ; Donaghey TC; Demokritou P; Brain JD; Molina RM
    Nanotoxicology; 2016 Aug; 10(6):720-7. PubMed ID: 26581431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric distribution of anionic phospholipids in supported lipid bilayers.
    Stanglmaier S; Hertrich S; Fritz K; Moulin JF; Haese-Seiller M; Rädler JO; Nickel B
    Langmuir; 2012 Jul; 28(29):10818-21. PubMed ID: 22789026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size.
    Drazenovic J; Ahmed S; Tuzinkiewicz NM; Wunder SL
    Langmuir; 2015 Jan; 31(2):721-31. PubMed ID: 25425021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation.
    Liu L; Zhou C; Xia X; Liu Y
    Int J Nanomedicine; 2016; 11():761-9. PubMed ID: 26966360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-dimensional DPPC based emulsion-like structures stabilized by silica nanoparticles.
    Guzmán E; Orsi D; Cristofolini L; Liggieri L; Ravera F
    Langmuir; 2014 Oct; 30(39):11504-12. PubMed ID: 25210864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploiting Conjugated Polyelectrolyte Photophysics toward Monitoring Real-Time Lipid Membrane-Surface Interaction Dynamics at the Single-Particle Level.
    Calver CF; Liu HW; Cosa G
    Langmuir; 2015 Nov; 31(43):11842-50. PubMed ID: 25955885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds.
    Wei X; Yu J; Ding L; Hu J; Jiang W
    J Environ Sci (China); 2017 Jul; 57():221-230. PubMed ID: 28647242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.