BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 29754612)

  • 1. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples.
    Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH
    Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine.
    Shellaiah M; Simon T; Venkatesan P; Sun KW; Ko FH; Wu SP
    Mikrochim Acta; 2017 Dec; 185(1):74. PubMed ID: 29594526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles.
    Kang J; Zhang Y; Li X; Miao L; Wu A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Screening and Colorimetric Determination of Clenbuterol and Ractopamine Using Unmodified Gold Nanoparticles as Probe.
    Luo Y; Liu X; Guo J; Gao H; Li Y; Xu J; Shen F; Sun C
    J Nanosci Nanotechnol; 2016 Jan; 16(1):548-54. PubMed ID: 27398486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe.
    Zhou Y; Wang P; Su X; Zhao H; He Y
    Talanta; 2013 Aug; 112():20-5. PubMed ID: 23708531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing.
    Duan J; He D; Wang W; Liu Y; Wu H; Wang Y; Fu M; Li S
    Talanta; 2013 Oct; 115():992-8. PubMed ID: 24054693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine.
    Zhang X; Zhao H; Xue Y; Wu Z; Zhang Y; He Y; Li X; Yuan Z
    Biosens Bioelectron; 2012 Apr; 34(1):112-7. PubMed ID: 22341861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine.
    Han S; Zhou T; Yin B; He P
    Mikrochim Acta; 2018 Mar; 185(4):210. PubMed ID: 29594705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Nanosensor Based on Carbon Dots for Recovered Fluorescence Detection Clenbuterol in Pork Samples.
    Liu Y; Lu Q; Hu X; Wang H; Li H; Zhang Y; Yao S
    J Fluoresc; 2017 Sep; 27(5):1847-1853. PubMed ID: 28634884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and naked-eye colorimetric detection of ultra trace sumatriptan in drinking water, saliva, and human urine samples based on the aggregation of gold nanoparticles.
    Minaee S; Reza Sohrabi M; Mortazavinik S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123039. PubMed ID: 37390721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles.
    Kumar N; Seth R; Kumar H
    Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples.
    Kailasa SK; Nguyen TP; Baek SH; Tu Phan LM; Rafique R; Park TJ
    Talanta; 2019 Dec; 205():120087. PubMed ID: 31450484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine.
    Peng T; Wang J; Zhao S; Zeng Y; Zheng P; Liang D; Mari GM; Jiang H
    Anal Chim Acta; 2018 Dec; 1040():143-149. PubMed ID: 30327104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles.
    António M; Ferreira R; Vitorino R; Daniel-da-Silva AL
    Talanta; 2020 Jul; 214():120868. PubMed ID: 32278414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles.
    Sutariya PG; Pandya A; Lodha A; Menon SK
    Talanta; 2016 Jan; 147():590-7. PubMed ID: 26592650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles.
    Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C
    Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes.
    Zhang L; Xu C; Liu C; Li B
    Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles.
    Liu Y; Zhang L; Wei W; Zhao H; Zhou Z; Zhang Y; Liu S
    Analyst; 2015 Jun; 140(12):3989-95. PubMed ID: 25899840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric detection of the β-agonist ractopamine in animal feed, tissue and urine samples using gold-silver alloy nanoparticles modified with sulfanilic acid.
    Hu X; Du J; Pan J; Wang F; Gong D; Zhang G
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jan; 36(1):35-45. PubMed ID: 30517825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.