BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29754821)

  • 1. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization.
    Hansen MMK; Wen WY; Ingerman E; Razooky BS; Thompson CE; Dar RD; Chin CW; Simpson ML; Weinberger LS
    Cell; 2018 Jun; 173(7):1609-1621.e15. PubMed ID: 29754821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean.
    Razooky BS; Cao Y; Hansen MMK; Perelson AS; Simpson ML; Weinberger LS
    PLoS Biol; 2017 Oct; 15(10):e2000841. PubMed ID: 29045398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-Transcriptional Noise Control.
    Hansen MMK; Weinberger LS
    Bioessays; 2019 Jul; 41(7):e1900044. PubMed ID: 31222776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the architecture of the HIV-1 Tat circuit: A decision-making circuit that lacks bistability and exploits stochastic noise.
    Razooky BS; Weinberger LS
    Methods; 2011 Jan; 53(1):68-77. PubMed ID: 21167940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient-mediated fate determination in a transcriptional circuit of HIV.
    Weinberger LS; Dar RD; Simpson ML
    Nat Genet; 2008 Apr; 40(4):466-70. PubMed ID: 18344999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional and posttranscriptional regulation of HIV-1 gene expression.
    Karn J; Stoltzfus CM
    Cold Spring Harb Perspect Med; 2012 Feb; 2(2):a006916. PubMed ID: 22355797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient Thresholding: A Mechanism Enabling Noncooperative Transcriptional Circuitry to Form a Switch.
    Aull KH; Tanner EJ; Thomson M; Weinberger LS
    Biophys J; 2017 Jun; 112(11):2428-2438. PubMed ID: 28591615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRNKL1 Is a Highly Selective Regulator of Intron-Retaining HIV-1 and Cellular mRNAs.
    Xiao H; Wyler E; Milek M; Grewe B; Kirchner P; Ekici A; Silva ABOV; Jungnickl D; Full F; Thomas M; Landthaler M; Ensser A; Überla K
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inefficient spliceosome assembly and abnormal branch site selection in splicing of an HIV-1 transcript in vitro.
    Dyhr-Mikkelsen H; Kjems J
    J Biol Chem; 1995 Oct; 270(41):24060-6. PubMed ID: 7592605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Transcriptional Strength of HIV-1 Subtype C Minimizes Gene Expression Noise and Confers Stability to the Viral Latent State.
    Pal S; Jaiswal V; Nala N; Ranga U
    J Virol; 2023 Jan; 97(1):e0137622. PubMed ID: 36533949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components.
    Likhoshvai VA; Khlebodarova TM; Bazhan SI; Gainova IA; Chereshnev VA; Bocharov GA
    BMC Genomics; 2014; 15 Suppl 12(Suppl 12):S1. PubMed ID: 25564443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity.
    Weinberger LS; Burnett JC; Toettcher JE; Arkin AP; Schaffer DV
    Cell; 2005 Jul; 122(2):169-82. PubMed ID: 16051143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of protein partners of the human immunodeficiency virus 1 tat/rev exon 3 leads to the discovery of a new HIV-1 splicing regulator, protein hnRNP K.
    Marchand V; Santerre M; Aigueperse C; Fouillen L; Saliou JM; Van Dorsselaer A; Sanglier-Cianférani S; Branlant C; Motorin Y
    RNA Biol; 2011; 8(2):325-42. PubMed ID: 21368586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes.
    Malim MH; Cullen BR
    Mol Cell Biol; 1993 Oct; 13(10):6180-9. PubMed ID: 8105371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of exon splicing silencers within human immunodeficiency virus type 1 tat exon 2 and tat-rev exon 3: evidence for inhibition mediated by cellular factors.
    Amendt BA; Si ZH; Stoltzfus CM
    Mol Cell Biol; 1995 Aug; 15(8):4606-15. PubMed ID: 7623852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Stronger Transcription Regulatory Circuit of HIV-1C Drives the Rapid Establishment of Latency with Implications for the Direct Involvement of Tat.
    Chakraborty S; Kabi M; Ranga U
    J Virol; 2020 Sep; 94(19):. PubMed ID: 32669338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptional transactivator Tat selectively regulates viral splicing.
    Jablonski JA; Amelio AL; Giacca M; Caputi M
    Nucleic Acids Res; 2010 Mar; 38(4):1249-60. PubMed ID: 19966273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets.
    Pai A; Weinberger LS
    Annu Rev Virol; 2017 Sep; 4(1):469-490. PubMed ID: 28800289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Argonaute proteins regulate HIV-1 multiply spliced RNA and viral production in a Dicer independent manner.
    Eckenfelder A; Ségéral E; Pinzón N; Ulveling D; Amadori C; Charpentier M; Nidelet S; Concordet JP; Zagury JF; Paillart JC; Berlioz-Torrent C; Seitz H; Emiliani S; Gallois-Montbrun S
    Nucleic Acids Res; 2017 Apr; 45(7):4158-4173. PubMed ID: 28003477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A re-examination of global suppression of RNA interference by HIV-1.
    Sanghvi VR; Steel LF
    PLoS One; 2011 Feb; 6(2):e17246. PubMed ID: 21386885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.