These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 29754824)
1. CnoX Is a Chaperedoxin: A Holdase that Protects Its Substrates from Irreversible Oxidation. Goemans CV; Vertommen D; Agrebi R; Collet JF Mol Cell; 2018 May; 70(4):614-627.e7. PubMed ID: 29754824 [TBL] [Abstract][Full Text] [Related]
2. The Chaperone and Redox Properties of CnoX Chaperedoxins Are Tailored to the Proteostatic Needs of Bacterial Species. Goemans CV; Beaufay F; Arts IS; Agrebi R; Vertommen D; Collet JF mBio; 2018 Nov; 9(6):. PubMed ID: 30482828 [TBL] [Abstract][Full Text] [Related]
3. Escherichia coli thioredoxin-like protein YbbN contains an atypical tetratricopeptide repeat motif and is a negative regulator of GroEL. Lin J; Wilson MA J Biol Chem; 2011 Jun; 286(22):19459-69. PubMed ID: 21498507 [TBL] [Abstract][Full Text] [Related]
4. Interferon-gamma is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE. Vandenbroeck K; Billiau A Biochimie; 1998; 80(8-9):729-37. PubMed ID: 9865495 [TBL] [Abstract][Full Text] [Related]
5. Functional diversity of YbbN/CnoX proteins: Insights from a comparative analysis of three thioredoxin-like oxidoreductases from Pseudomonas aeruginosa, Xylella fastidiosa and Escherichia coli. Meireles DA; Yokomizo CH; Silva FP; Venâncio TM; Degenhardt MFS; Oliveira CLP; Netto LES Redox Biol; 2024 Jun; 72():103128. PubMed ID: 38554523 [TBL] [Abstract][Full Text] [Related]
6. A molecular device for the redox quality control of GroEL/ES substrates. Dupuy E; Van der Verren SE; Lin J; Wilson MA; Dachsbeck AV; Viela F; Latour E; Gennaris A; Vertommen D; Dufrêne YF; Iorga BI; Goemans CV; Remaut H; Collet JF Cell; 2023 Mar; 186(5):1039-1049.e17. PubMed ID: 36764293 [TBL] [Abstract][Full Text] [Related]
7. Fort CnoX: Protecting Bacterial Proteins From Misfolding and Oxidative Damage. Dupuy E; Collet JF Front Mol Biosci; 2021; 8():681932. PubMed ID: 34017858 [TBL] [Abstract][Full Text] [Related]
8. The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase. Kthiri F; Le HT; Tagourti J; Kern R; Malki A; Caldas T; Abdallah J; Landoulsi A; Richarme G Biochem Biophys Res Commun; 2008 Oct; 374(4):668-72. PubMed ID: 18657513 [TBL] [Abstract][Full Text] [Related]
9. ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Thomas JG; Baneyx F Mol Microbiol; 2000 Jun; 36(6):1360-70. PubMed ID: 10931286 [TBL] [Abstract][Full Text] [Related]
10. The Escherichia coli thioredoxin homolog YbbN/Trxsc is a chaperone and a weak protein oxidoreductase. Caldas T; Malki A; Kern R; Abdallah J; Richarme G Biochem Biophys Res Commun; 2006 May; 343(3):780-6. PubMed ID: 16563353 [TBL] [Abstract][Full Text] [Related]
11. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Winter J; Linke K; Jatzek A; Jakob U Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339 [TBL] [Abstract][Full Text] [Related]
12. The Thioredoxin Fold Protein (TFP2) from Extreme Acidophilic Muñoz-Villagrán C; Acevedo-Arbunic J; Härtig E; Issotta F; Mascayano C; Jahn D; Jahn M; Levicán G Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000017 [TBL] [Abstract][Full Text] [Related]
13. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443 [TBL] [Abstract][Full Text] [Related]
14. Chaperone-assisted protein folding in the cell cytoplasm. Houry WA Curr Protein Pept Sci; 2001 Sep; 2(3):227-44. PubMed ID: 12369934 [TBL] [Abstract][Full Text] [Related]
15. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. Diamant S; Eliahu N; Rosenthal D; Goloubinoff P J Biol Chem; 2001 Oct; 276(43):39586-91. PubMed ID: 11517217 [TBL] [Abstract][Full Text] [Related]
16. Global analysis of chaperone effects using a reconstituted cell-free translation system. Niwa T; Kanamori T; Ueda T; Taguchi H Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8937-42. PubMed ID: 22615364 [TBL] [Abstract][Full Text] [Related]
17. Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Georgopoulos C Genetics; 2006 Dec; 174(4):1699-707. PubMed ID: 17182732 [No Abstract] [Full Text] [Related]
18. Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL. Bhandari V; Houry WA Adv Exp Med Biol; 2015; 883():271-94. PubMed ID: 26621473 [TBL] [Abstract][Full Text] [Related]
19. Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein. Imamoglu R; Balchin D; Hayer-Hartl M; Hartl FU Nat Commun; 2020 Jan; 11(1):365. PubMed ID: 31953415 [TBL] [Abstract][Full Text] [Related]
20. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Kerner MJ; Naylor DJ; Ishihama Y; Maier T; Chang HC; Stines AP; Georgopoulos C; Frishman D; Hayer-Hartl M; Mann M; Hartl FU Cell; 2005 Jul; 122(2):209-20. PubMed ID: 16051146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]