These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29755164)

  • 1. Mass Measurements of Focal Adhesions in Single Cells Using High Resolution Surface Plasmon Resonance Microscopy.
    Peterson AW; Halter M; Tona A; Plant AL; Elliott JT
    Proc SPIE Int Soc Opt Eng; 2018; 10509():. PubMed ID: 29755164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution surface plasmon resonance imaging for single cells.
    Peterson AW; Halter M; Tona A; Plant AL
    BMC Cell Biol; 2014 Dec; 15():35. PubMed ID: 25441447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real time sensing of cell-substrate interactions.
    Zeng Y; Zhou J; Wang X; Cai Z; Shao Y
    Biosens Bioelectron; 2019 Dec; 145():111717. PubMed ID: 31561092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance microscopy: Achieving a quantitative optical response.
    Peterson AW; Halter M; Plant AL; Elliott JT
    Rev Sci Instrum; 2016 Sep; 87(9):093703. PubMed ID: 27782542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Single-Shot Autofocus Approach for Surface Plasmon Resonance Microscopy.
    Xu Y; Wang X; Zhai C; Wang J; Zeng Q; Yang Y; Yu H
    Anal Chem; 2021 Feb; 93(4):2433-2439. PubMed ID: 33412859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction.
    Yu H; Shan X; Wang S; Tao N
    Anal Chem; 2017 Mar; 89(5):2704-2707. PubMed ID: 28194944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Nanoparticle Analysis in Surface Plasmon Resonance Microscopy.
    Wang X; Zeng Q; Xie F; Wang J; Yang Y; Xu Y; Li J; Yu H
    Anal Chem; 2021 May; 93(20):7399-7404. PubMed ID: 33973472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Plasmon Resonance Microscopy Based on Total Internal Reflection.
    Zhang T; Wang X; Zeng Y; Huang S; Dai X; Kong W; Liu Q; Chen J; Qu J; Shao Y
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point Spread Function of Objective-Based Surface Plasmon Resonance Microscopy.
    Jiang Y; Wang W
    Anal Chem; 2018 Aug; 90(15):9650-9656. PubMed ID: 29965733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination.
    Kuai Y; Chen J; Tang X; Xiang Y; Lu F; Kuang C; Xu L; Shen W; Cheng J; Gui H; Zou G; Wang P; Ming H; Liu J; Liu X; Lakowicz JR; Zhang D
    Sci Adv; 2019 Mar; 5(3):eaav5335. PubMed ID: 30944860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy.
    Cho K; Fasoli JB; Yoshimatsu K; Shea KJ; Corn RM
    Anal Chem; 2015; 87(9):4973-9. PubMed ID: 25844641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy.
    Liu J; Eddings MA; Miles AR; Bukasov R; Gale BK; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4296-301. PubMed ID: 19408947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy.
    Jamil MM; Denyer MC; Youseffi M; Britland ST; Liu S; See CW; Somekh MG; Zhang J
    J Struct Biol; 2008 Oct; 164(1):75-80. PubMed ID: 18611441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions.
    Case LB; Baird MA; Shtengel G; Campbell SL; Hess HF; Davidson MW; Waterman CM
    Nat Cell Biol; 2015 Jul; 17(7):880-92. PubMed ID: 26053221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Analysis of Non-Interferometry Based Surface Plasmon Resonance Microscopes.
    Tontarawongsa S; Visitsattapongse S; Pechprasarn S
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance imaging of excitable cells.
    Howe CL; Webb KF; Abayzeed SA; Anderson DJ; Denning C; Russell NA
    J Phys D Appl Phys; 2019 Mar; 52(10):104001. PubMed ID: 30867618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Analysis of Membrane-Protein Binding Kinetics and Cell-Surface Adhesion Using Plasmonic Scattering Microscopy.
    Zhang P; Zhou X; Jiang J; Kolay J; Wang R; Ma G; Wan Z; Wang S
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209469. PubMed ID: 35922374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-Free Imaging of Nanoscale Displacements and Free-Energy Profiles of Focal Adhesions with Plasmonic Scattering Microscopy.
    Zhang P; Zhou X; Wang R; Jiang J; Wan Z; Wang S
    ACS Sens; 2021 Nov; 6(11):4244-4254. PubMed ID: 34711049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the rotation of single CdS nanorods during photocatalysis with surface plasmon resonance microscopy.
    Jiang Y; Su H; Wei W; Wang Y; Chen HY; Wang W
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6630-6634. PubMed ID: 30872472
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.