These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29755198)

  • 1. Modeling and inference for infectious disease dynamics: a likelihood-based approach.
    Bretó C
    Stat Sci; 2018 Feb; 33(1):57-69. PubMed ID: 29755198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models.
    Simpson MJ; Baker RE; Buenzli PR; Nicholson R; Maclaren OJ
    J Theor Biol; 2022 Sep; 549():111201. PubMed ID: 35752285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Panel Data Analysis via Mechanistic Models.
    Bretó C; Ionides EL; King AA
    J Am Stat Assoc; 2019 Jun; 115(531):1178-1188. PubMed ID: 32905476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A second-order iterated smoothing algorithm.
    Nguyen D; Ionides EL
    Stat Comput; 2017 Nov; 27(6):1677-1692. PubMed ID: 28860681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model selection and parameter estimation for dynamic epidemic models via iterated filtering: application to rotavirus in Germany.
    Stocks T; Britton T; Höhle M
    Biostatistics; 2020 Jul; 21(3):400-416. PubMed ID: 30265310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo.
    Golightly A; Wilkinson DJ
    Interface Focus; 2011 Dec; 1(6):807-20. PubMed ID: 23226583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
    He D; Ionides EL; King AA
    J R Soc Interface; 2010 Feb; 7(43):271-83. PubMed ID: 19535416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference for dynamic and latent variable models via iterated, perturbed Bayes maps.
    Ionides EL; Nguyen D; Atchadé Y; Stoev S; King AA
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):719-24. PubMed ID: 25568084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trends in the Mechanistic and Dynamic Modeling of Infectious Diseases.
    Lessler J; Azman AS; Grabowski MK; Salje H; Rodriguez-Barraquer I
    Curr Epidemiol Rep; 2016; 3(3):212-222. PubMed ID: 32226711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.
    Durstewitz D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005542. PubMed ID: 28574992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter.
    Park J; Ionides EL
    Stat Comput; 2020 Sep; 30(5):1497-1522. PubMed ID: 35664372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical guide to pseudo-marginal methods for computational inference in systems biology.
    Warne DJ; Baker RE; Simpson MJ
    J Theor Biol; 2020 Jul; 496():110255. PubMed ID: 32223995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Birth/birth-death processes and their computable transition probabilities with biological applications.
    Ho LST; Xu J; Crawford FW; Minin VN; Suchard MA
    J Math Biol; 2018 Mar; 76(4):911-944. PubMed ID: 28741177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic SIR model with contact-tracing: large population limits and statistical inference.
    Clémençon S; Tran VC; de Arazoza H
    J Biol Dyn; 2008 Oct; 2(4):392-414. PubMed ID: 22876905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference for nonlinear dynamical systems.
    Ionides EL; Bretó C; King AA
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18438-43. PubMed ID: 17121996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference for nonlinear epidemiological models using genealogies and time series.
    Rasmussen DA; Ratmann O; Koelle K
    PLoS Comput Biol; 2011 Aug; 7(8):e1002136. PubMed ID: 21901082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitting stochastic epidemic models to gene genealogies using linear noise approximation.
    Tang M; Dudas G; Bedford T; Minin VN
    Ann Appl Stat; 2023 Mar; 17(1):1-22. PubMed ID: 37273682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.