BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29755487)

  • 1. Enhancing EPA Content in an Arctic Diatom: A Factorial Design Study to Evaluate Interactive Effects of Growth Factors.
    Steinrücken P; Mjøs SA; Prestegard SK; Erga SR
    Front Plant Sci; 2018; 9():491. PubMed ID: 29755487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies.
    Steinrücken P; Erga SR; Mjøs SA; Kleivdal H; Prestegard SK
    Algal Res; 2017 Sep; 26():392-401. PubMed ID: 28989862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.
    Hamilton ML; Warwick J; Terry A; Allen MJ; Napier JA; Sayanova O
    PLoS One; 2015; 10(12):e0144054. PubMed ID: 26658738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the potential application of polar and temperate marine microalgae for EPA and DHA production.
    Boelen P; van Dijk R; Sinninghe Damsté JS; Rijpstra WI; Buma AG
    AMB Express; 2013 May; 3(1):26. PubMed ID: 23673135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of High-Level Omega-3 Eicosapentaenoic Acid (EPA) Production from Phaeodactylum tricornutum.
    Cui Y; Thomas-Hall SR; Chua ET; Schenk PM
    J Phycol; 2021 Feb; 57(1):258-268. PubMed ID: 33025589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin.
    Marella TK; Tiwari A
    Bioresour Technol; 2020 Jul; 307():123245. PubMed ID: 32234591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine Cryptophytes Are Great Sources of EPA and DHA.
    Peltomaa E; Johnson MD; Taipale SJ
    Mar Drugs; 2017 Dec; 16(1):. PubMed ID: 29278384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution of microalgal strains empowered by fulvic acid for enhanced polyunsaturated fatty acid production.
    Wang X; Luo SW; Luo W; Yang WD; Liu JS; Li HY
    Bioresour Technol; 2019 Apr; 277():204-210. PubMed ID: 30630660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.
    Go RE; Hwang KA; Park GT; Lee HM; Lee GA; Kim CW; Jeon SY; Seo JW; Hong WK; Choi KC
    J Biomed Res; 2016 May; 30(3):234-42. PubMed ID: 27533934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing EPA production and fatty acid profiles of three
    Steinrücken P; Prestegard SK; de Vree JH; Storesund JE; Pree B; Mjøs SA; Erga SR
    Algal Res; 2018 Mar; 30():11-22. PubMed ID: 29503805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of three rapeseed oil-rich diets, fortified with alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid on the composition and oxidizability of low-density lipoproteins: results of a controlled study in healthy volunteers.
    Egert S; Somoza V; Kannenberg F; Fobker M; Krome K; Erbersdobler HF; Wahrburg U
    Eur J Clin Nutr; 2007 Mar; 61(3):314-25. PubMed ID: 16969378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp.
    Adarme-Vega TC; Thomas-Hall SR; Lim DK; Schenk PM
    Mar Drugs; 2014 Jun; 12(6):3381-98. PubMed ID: 24901700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eicosapentaenoic acid and docosahexaenoic acid effects on tumour mitochondrial metabolism, acyl CoA metabolism and cell proliferation.
    Colquhoun A; Ramos KL; Schumacher RI
    Cell Biochem Funct; 2001 Jun; 19(2):97-105. PubMed ID: 11335934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum.
    Hamilton ML; Powers S; Napier JA; Sayanova O
    Mar Drugs; 2016 Mar; 14(3):. PubMed ID: 27005636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eicosapentaenoic Acid Versus Docosahexaenoic Acid as Options for Vascular Risk Prevention: A Fish Story.
    Singh S; Arora RR; Singh M; Khosla S
    Am J Ther; 2016; 23(3):e905-10. PubMed ID: 25828517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential responses in EPA and fucoxanthin production by the marine diatom Stauroneis sp. under varying cultivation conditions.
    Parkes R; Archer L; Gee DM; Smyth TJ; Gillespie E; Touzet N
    Biotechnol Prog; 2021 Nov; 37(6):e3197. PubMed ID: 34337902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.
    Sun M; Zhou Z; Dong J; Zhang J; Xia Y; Shu R
    Microb Pathog; 2016 Oct; 99():196-203. PubMed ID: 27565090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid.
    Pereira SL; Leonard AE; Huang YS; Chuang LT; Mukerji P
    Biochem J; 2004 Dec; 384(Pt 2):357-66. PubMed ID: 15307817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus.
    Hu H; Li JY; Pan XR; Zhang F; Ma LL; Wang HJ; Zeng RJ
    Sci Total Environ; 2019 Mar; 656():140-149. PubMed ID: 30504016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.