These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 29755588)
41. Influence of Energy and Electron Availability on Zheng Y; Harwood CS Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440 [TBL] [Abstract][Full Text] [Related]
42. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Henard CA; Wu C; Xiong W; Henard JM; Davidheiser-Kroll B; Orata FD; Guarnieri MT Appl Environ Microbiol; 2021 Aug; 87(18):e0088121. PubMed ID: 34288705 [TBL] [Abstract][Full Text] [Related]
43. Batch Experiments Demonstrating a Two-Stage Bacterial Process Coupling Methanotrophic and Heterotrophic Bacteria for 1-Alkene Production From Methane. Khanongnuch R; Mangayil R; Santala V; Hestnes AG; Svenning MM; Rissanen AJ Front Microbiol; 2022; 13():874627. PubMed ID: 35663866 [TBL] [Abstract][Full Text] [Related]
44. Efficient production of d-lactate from methane in a lactate-tolerant strain of Lee JK; Kim S; Kim W; Kim S; Cha S; Moon H; Hur DH; Kim SY; Na JG; Lee JW; Lee EY; Hahn JS Biotechnol Biofuels; 2019; 12():234. PubMed ID: 31583020 [TBL] [Abstract][Full Text] [Related]
45. Individual methane emissions (and other gas flows) are repeatable and their relationships with feed efficiency are similar across two contrasting diets in growing bulls. Bes A; Nozière P; Renand G; Rochette Y; Guarnido-Lopez P; Cantalapiedra-Hijar G; Martin C Animal; 2022 Aug; 16(8):100583. PubMed ID: 35797749 [TBL] [Abstract][Full Text] [Related]
46. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands. Nolasco D; Lima RN; Hernández PA; Pérez NM Environ Sci Pollut Res Int; 2008 Jan; 15(1):51-60. PubMed ID: 18306888 [TBL] [Abstract][Full Text] [Related]
47. Phenotypic relationship and repeatability of methane emissions and performance traits in beef cattle using a GreenFeed system. Ryan CV; Pabiou T; Purfield DC; Conroy S; Kirwan SF; Crowley JJ; Murphy CP; Evans RD J Anim Sci; 2022 Dec; 100(12):. PubMed ID: 36268991 [TBL] [Abstract][Full Text] [Related]
48. Stimulation of cell growth by addition of tungsten in batch culture of a methanotrophic bacterium, Methylomicrobium alcaliphilum 20Z on methane and methanol. Cho S; Ha S; Kim HS; Han JH; Kim H; Yeon YJ; Na JG; Lee J J Biotechnol; 2020 Feb; 309():81-84. PubMed ID: 31899249 [TBL] [Abstract][Full Text] [Related]
49. Treatment of landfill gas with low methane content by biocover systems. Thomasen TB; Scheutz C; Kjeldsen P Waste Manag; 2019 Feb; 84():29-37. PubMed ID: 30691904 [TBL] [Abstract][Full Text] [Related]
50. Effects of Nitrogen Supplementation Status on CO Cho JM; Oh YK; Park WK; Chang YK J Microbiol Biotechnol; 2020 Aug; 30(8):1235-1243. PubMed ID: 32855379 [TBL] [Abstract][Full Text] [Related]
51. Stoichiometry of methane oxidation in the methane-oxidizing strain M 102 under the influence of various CH4/O2 mixtures. Naguib M Z Allg Mikrobiol; 1976; 16(6):437-44. PubMed ID: 983129 [TBL] [Abstract][Full Text] [Related]
52. Exogenous addition of H Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019 [TBL] [Abstract][Full Text] [Related]
53. CO Liu J; Xie L; Elsworth D; Gan Q Environ Sci Technol; 2019 Aug; 53(15):9328-9336. PubMed ID: 31318200 [TBL] [Abstract][Full Text] [Related]
54. Biosensing systems for the detection and quantification of methane gas. Poma N; Bonini A; Vivaldi F; Biagini D; Di Luca M; Bottai D; Di Francesco F; Tavanti A Appl Microbiol Biotechnol; 2023 Sep; 107(18):5627-5634. PubMed ID: 37486352 [TBL] [Abstract][Full Text] [Related]
55. Pollution alters methanogenic and methanotrophic communities and increases dissolved methane in small ponds. Wang B; Stirling E; He Z; Ma B; Zhang H; Zheng X; Xiao F; Yan Q Sci Total Environ; 2021 Dec; 801():149723. PubMed ID: 34438138 [TBL] [Abstract][Full Text] [Related]
56. Sulfide restrains the growth of Methylocapsa acidiphila converting renewable biogas to single cell protein. Xu M; Zhou H; Yang X; Angelidaki I; Zhang Y Water Res; 2020 Oct; 184():116138. PubMed ID: 32721763 [TBL] [Abstract][Full Text] [Related]
57. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Hakobyan A; Zhu J; Glatter T; Paczia N; Liesack W Metab Eng; 2020 Sep; 61():181-196. PubMed ID: 32479801 [TBL] [Abstract][Full Text] [Related]
58. Microbial dynamics and biogenic methane production responses to the addition of glycine betaine in shales. Deng S; Wang B; Sun S; You Q; She Y; Zhang F Sci Total Environ; 2023 Sep; 891():164668. PubMed ID: 37285998 [TBL] [Abstract][Full Text] [Related]
59. Integrative Genome-Scale Metabolic Modeling Reveals Versatile Metabolic Strategies for Methane Utilization in Methylomicrobium album BG8. Villada JC; Duran MF; Lim CK; Stein LY; Lee PKH mSystems; 2022 Apr; 7(2):e0007322. PubMed ID: 35258342 [TBL] [Abstract][Full Text] [Related]
60. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Patel SK; Mardina P; Kim D; Kim SY; Kalia VC; Kim IW; Lee JK Bioresour Technol; 2016 Oct; 218():202-8. PubMed ID: 27371792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]