BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29755658)

  • 1. Combined linkage and association analysis of classical Hodgkin lymphoma.
    Lawrie A; Han S; Sud A; Hosking F; Cezard T; Turner D; Clark C; Murray GI; Culligan DJ; Houlston RS; Vickers MA
    Oncotarget; 2018 Apr; 9(29):20377-20385. PubMed ID: 29755658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in a gene encoding a midbody kelch protein in familial and sporadic classical Hodgkin lymphoma lead to binucleated cells.
    Salipante SJ; Mealiffe ME; Wechsler J; Krem MM; Liu Y; Namkoong S; Bhagat G; Kirchhoff T; Offit K; Lynch H; Wiernik PH; Roshal M; McMaster ML; Tucker M; Fromm JR; Goldin LR; Horwitz MS
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14920-5. PubMed ID: 19706467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization.
    Hartmann S; Martin-Subero JI; Gesk S; Hüsken J; Giefing M; Nagel I; Riemke J; Chott A; Klapper W; Parrens M; Merlio JP; Küppers R; Bräuninger A; Siebert R; Hansmann ML
    Haematologica; 2008 Sep; 93(9):1318-26. PubMed ID: 18641027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations of the CD58 gene in classical Hodgkin lymphoma.
    Schneider M; Schneider S; Zühlke-Jenisch R; Klapper W; Sundström C; Hartmann S; Hansmann ML; Siebert R; Küppers R; Giefing M
    Genes Chromosomes Cancer; 2015 Oct; 54(10):638-45. PubMed ID: 26194173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features.
    Rodig SJ; Ouyang J; Juszczynski P; Currie T; Law K; Neuberg DS; Rabinovich GA; Shipp MA; Kutok JL
    Clin Cancer Res; 2008 Jun; 14(11):3338-44. PubMed ID: 18519761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation analysis of tumor necrosis factor alpha-induced protein 3 gene in Hodgkin lymphoma.
    Etzel BM; Gerth M; Chen Y; Wünsche E; Facklam T; Beck JF; Guntinas-Lichius O; Petersen I
    Pathol Res Pract; 2017 Mar; 213(3):256-260. PubMed ID: 28189285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation.
    Weniger MA; Melzner I; Menz CK; Wegener S; Bucur AJ; Dorsch K; Mattfeldt T; Barth TF; Möller P
    Oncogene; 2006 Apr; 25(18):2679-84. PubMed ID: 16532038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma.
    Lennerz JK; Hoffmann K; Bubolz AM; Lessel D; Welke C; Rüther N; Viardot A; Möller P
    Oncotarget; 2015 Oct; 6(30):29097-110. PubMed ID: 26336985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent somatic loss of TNFRSF14 in classical Hodgkin lymphoma.
    Salipante SJ; Adey A; Thomas A; Lee C; Liu YJ; Kumar A; Lewis AP; Wu D; Fromm JR; Shendure J
    Genes Chromosomes Cancer; 2016 Mar; 55(3):278-87. PubMed ID: 26650888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma.
    Gomez F; Fisk B; McMichael JF; Mosior M; Foltz JA; Skidmore ZL; Duncavage EJ; Miller CA; Abel H; Li YS; Russler-Germain DA; Krysiak K; Watkins MP; Ramirez CA; Schmidt A; Martins Rodrigues F; Trani L; Khanna A; Wagner JA; Fulton RS; Fronick CC; O'Laughlin MD; Schappe T; Cashen AF; Mehta-Shah N; Kahl BS; Walker J; Bartlett NL; Griffith M; Fehniger TA; Griffith OL
    Cancer Res Commun; 2023 Nov; 3(11):2312-2330. PubMed ID: 37910143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation].
    Weniger MA; Melzner I; Menz CK; Wegener S; Bucur AJ; Dorsch K; Mattfeldt T; Barth TF; Möller P
    Verh Dtsch Ges Pathol; 2006; 90():210-5. PubMed ID: 17867599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical Hodgkin lymphoma, lymphocyte depleted type: clinicopathological analysis and prognostic comparison with other types of classical Hodgkin lymphoma.
    Karube K; Niino D; Kimura Y; Ohshima K
    Pathol Res Pract; 2013 Apr; 209(4):201-7. PubMed ID: 23478005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis.
    Carbone A; Gloghini A; Caruso A; De Paoli P; Dolcetti R
    Int J Cancer; 2017 Mar; 140(6):1233-1245. PubMed ID: 27750386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma are highly dependent on oxidative phosphorylation.
    Birkenmeier K; Dröse S; Wittig I; Winkelmann R; Käfer V; Döring C; Hartmann S; Wenz T; Reichert AS; Brandt U; Hansmann ML
    Int J Cancer; 2016 May; 138(9):2231-46. PubMed ID: 26595876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma.
    Schmidt A; Schmitz R; Giefing M; Martin-Subero JI; Gesk S; Vater I; Massow A; Maggio E; Schneider M; Hansmann ML; Siebert R; Küppers R
    Genes Chromosomes Cancer; 2010 Sep; 49(9):803-9. PubMed ID: 20607853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibroblasts in Nodular Sclerosing Classical Hodgkin Lymphoma Are Defined by a Specific Phenotype and Protect Tumor Cells from Brentuximab-Vedotin Induced Injury.
    Bankov K; Döring C; Ustaszewski A; Giefing M; Herling M; Cencioni C; Spallotta F; Gaetano C; Küppers R; Hansmann ML; Hartmann S
    Cancers (Basel); 2019 Oct; 11(11):. PubMed ID: 31671543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Down-regulation of ATM protein in HRS cells of nodular sclerosis Hodgkin's lymphoma in children occurs in the absence of ATM gene inactivation.
    Bose S; Starczynski J; Chukwuma M; Baumforth K; Wei W; Morgan S; Byrd P; Ying J; Grundy R; Mann JR; Tao Q; Taylor AM; Murray PG; Stankovic T
    J Pathol; 2007 Nov; 213(3):329-36. PubMed ID: 17876757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs.
    Van Vlierberghe P; De Weer A; Mestdagh P; Feys T; De Preter K; De Paepe P; Lambein K; Vandesompele J; Van Roy N; Verhasselt B; Poppe B; Speleman F
    Br J Haematol; 2009 Dec; 147(5):686-90. PubMed ID: 19775296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small and big Hodgkin-Reed-Sternberg cells of Hodgkin lymphoma cell lines L-428 and L-1236 lack consistent differences in gene expression profiles and are capable to reconstitute each other.
    Rengstl B; Kim S; Döring C; Weiser C; Bein J; Bankov K; Herling M; Newrzela S; Hansmann ML; Hartmann S
    PLoS One; 2017; 12(5):e0177378. PubMed ID: 28505189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal autophagy is pivotal for Hodgkin and Reed-Sternberg cells' survival and growth revealing a new strategy for Hodgkin lymphoma treatment.
    Birkenmeier K; Moll K; Newrzela S; Hartmann S; Dröse S; Hansmann ML
    Oncotarget; 2016 Jul; 7(29):46579-46588. PubMed ID: 27366944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.