These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29755924)

  • 41. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source.
    Vinokhodov A; Krivokorytov M; Sidelnikov Y; Krivtsun V; Medvedev V; Bushuev V; Koshelev K; Glushkov D; Ellwi S
    Rev Sci Instrum; 2016 Oct; 87(10):103304. PubMed ID: 27802692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Facile Single-Phase-Fluid-Driven Bubble Microfluidic Generator for Potential Detection of Viruses Suspended in Air.
    Man J; Man L; Zhou C; Li J; Liang S; Zhang S; Li J
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets.
    Gardner K; Uddin MM; Tran L; Pham T; Vanapalli S; Li W
    Lab Chip; 2022 Oct; 22(21):4067-4080. PubMed ID: 36214344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.
    Cole RH; Tang SY; Siltanen CA; Shahi P; Zhang JQ; Poust S; Gartner ZJ; Abate AR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8728-8733. PubMed ID: 28760972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Droplet formation under the effect of a flexible nozzle plate.
    Sangplung S; Liburdy JA
    J Colloid Interface Sci; 2009 Sep; 337(1):145-54. PubMed ID: 19501837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields.
    Sahore V; Doonan SR; Bailey RC
    Anal Methods; 2018 Sep; 10(35):4264-4274. PubMed ID: 30886651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microfluidic droplet generator based on a piezoelectric actuator.
    Bransky A; Korin N; Khoury M; Levenberg S
    Lab Chip; 2009 Feb; 9(4):516-20. PubMed ID: 19190786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On-demand sample injection: combining acoustic actuation with a tear-drop shaped nozzle to generate droplets with precise spatial and temporal control.
    Brenker JC; Devendran C; Neild A; Alan T
    Lab Chip; 2020 Jan; 20(2):253-265. PubMed ID: 31854405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review.
    Azimi-Boulali J; Madadelahi M; Madou MJ; Martinez-Chapa SO
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32580516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic on-demand droplet merging using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices.
    Josephides DN; Sajjadi S
    Langmuir; 2015 Jan; 31(3):1218-24. PubMed ID: 25517938
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect.
    Shams Khorrami A; Rezai P
    Biomicrofluidics; 2018 May; 12(3):034113. PubMed ID: 29983838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles.
    Yadavali S; Jeong HH; Lee D; Issadore D
    Nat Commun; 2018 Mar; 9(1):1222. PubMed ID: 29581433
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous Droplet Generation with In-Series Droplet T-Junctions Induced by Gravity-Induced Flow.
    Bajgiran KR; Cordova AS; Elkhanoufi R; Dorman JA; Melvin AT
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683262
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow.
    Carreras MP; Wang S
    J Biotechnol; 2017 Jun; 251():106-111. PubMed ID: 28450257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LCAT pump optimization for an integrated microfluidic droplet generator.
    Fang WF; Lee AP
    Microfluid Nanofluidics; 2015 May; 18(5-6):1265-1275. PubMed ID: 30057518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.