These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29755970)

  • 1. How to Achieve Better Results Using PASS-Based Virtual Screening: Case Study for Kinase Inhibitors.
    Pogodin PV; Lagunin AA; Rudik AV; Filimonov DA; Druzhilovskiy DS; Nicklaus MC; Poroikov VV
    Front Chem; 2018; 6():133. PubMed ID: 29755970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving (Q)SAR predictions by examining bias in the selection of compounds for experimental testing.
    Pogodin PV; Lagunin AA; Filimonov DA; Nicklaus MC; Poroikov VV
    SAR QSAR Environ Res; 2019 Oct; 30(10):759-773. PubMed ID: 31547686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Discovering new antiretroviral compounds in "Big Data" chemical space of the SAVI library].
    Savosina PI; Stolbov LA; Druzhilovskiy DS; Filimonov DA; Nicklaus MC; Poroikov VV
    Biomed Khim; 2019 Feb; 65(2):73-79. PubMed ID: 30950810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (Q)SAR Models of HIV-1 Protein Inhibition by Drug-Like Compounds.
    Stolbov LA; Druzhilovskiy DS; Filimonov DA; Nicklaus MC; Poroikov VV
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31881687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening.
    Cortés-Ciriano I; Firth NC; Bender A; Watson O
    J Chem Inf Model; 2018 Sep; 58(9):2000-2014. PubMed ID: 30130102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting kinase inhibitors using bioactivity matrix derived informer sets.
    Zhang H; Ericksen SS; Lee CP; Ananiev GE; Wlodarchak N; Yu P; Mitchell JC; Gitter A; Wright SJ; Hoffmann FM; Wildman SA; Newton MA
    PLoS Comput Biol; 2019 Aug; 15(8):e1006813. PubMed ID: 31381559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward automated biochemotype annotation for large compound libraries.
    Chen X; Liang Y; Xu J
    Mol Divers; 2006 Aug; 10(3):495-509. PubMed ID: 16967195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides.
    Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO
    Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach.
    Pogodin PV; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2015; 26(10):783-93. PubMed ID: 26305108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.
    Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y
    J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space.
    Singh N; Sun H; Chaudhury S; Abdulhameed MD; Wallqvist A; Tawa G
    J Cheminform; 2012 Feb; 4(1):4. PubMed ID: 22316383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico target prediction for elucidating the mode of action of herbicides including prospective validation.
    Chiddarwar RK; Rohrer SG; Wolf A; Tresch S; Wollenhaupt S; Bender A
    J Mol Graph Model; 2017 Jan; 71():70-79. PubMed ID: 27846423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the predictivity of virtual screening for ABL kinase inhibitors to hinder drug resistance.
    Gani OA; Narayanan D; Engh RA
    Chem Biol Drug Des; 2013 Nov; 82(5):506-19. PubMed ID: 23746052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of QSAR Equations for Virtual Screening.
    Spiegel J; Senderowitz H
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary chemical binding similarity approach integrated with 3D-QSAR method for effective virtual screening.
    Durai P; Ko YJ; Pan CH; Park K
    BMC Bioinformatics; 2020 Jul; 21(1):309. PubMed ID: 32664863
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.