BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 29756008)

  • 1. An optrode array for spatiotemporally-precise large-scale optogenetic stimulation of deep cortical layers in non-human primates.
    Clark AM; Ingold A; Reiche CF; Cundy D; Balsor JL; Federer F; McAlinden N; Cheng Y; Rolston JD; Rieth L; Dawson MD; Mathieson K; Blair S; Angelucci A
    Commun Biol; 2024 Mar; 7(1):329. PubMed ID: 38485764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays.
    Son Y; Lee HJ; Kim J; Shin H; Choi N; Lee CJ; Yoon ES; Yoon E; Wise KD; Kim TG; Cho IJ
    Sci Rep; 2015 Oct; 5():15466. PubMed ID: 26494437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation.
    Guan S; Tian H; Yang Y; Liu M; Ding J; Wang J; Fang Y
    Nat Protoc; 2023 Jun; 18(6):1712-1744. PubMed ID: 37248393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the Surface Material and Illumination upon the Performance of a Microelectrode/Electrolyte Interface in Optogenetics.
    Shen J; Xu Y; Xiao Z; Liu Y; Liu H; Wang F; Yao W; Yan Z; Zhang M; Wu Z; Liu Y; Pun SH; Lei TC; Vai MI; Mak PU; Chen C; Zhang B
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577704
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    McAlinden N; Reiche CF; Clark AM; Scharf R; Cheng Y; Sharma R; Rieth L; Dawson MD; Angelucci A; Mathieson K; Blair S
    bioRxiv; 2024 Mar; ():. PubMed ID: 38562871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication.
    Weidlich S; Krause KJ; Schnitker J; Wolfrum B; Offenhäusser A
    Nanotechnology; 2017 Jan; 28(9):095302. PubMed ID: 28139471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Optrode Array for Spatiotemporally Precise Large-Scale Optogenetic Stimulation of Deep Cortical Layers in Non-human Primates.
    Angelucci A; Clark A; Ingold A; Reiche C; Cundy D; Balsor J; Federer F; McAlinden N; Cheng Y; Rolston J; Rieth L; Dawson M; Mathieson K; Blair S
    Res Sq; 2023 Feb; ():. PubMed ID: 36909489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming the field-of-view to diameter trade-off in microendoscopy via computational optrode-array microscopy.
    Guo R; Sorenson R; Scharf R; Koch A; Groover A; Sieburth L; Blair S; Menon R
    Opt Express; 2023 Feb; 31(5):7505-7514. PubMed ID: 36859879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface.
    Luo J; Xue N; Chen J
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications.
    Guo B; Fan Y; Wang M; Cheng Y; Ji B; Chen Y; Wang G
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Electrical and Optical Neural Interfaces.
    Ramezani Z; Seo KJ; Fang H
    J Micromech Microeng; 2021 Apr; 31(4):. PubMed ID: 34177136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain.
    Vandekerckhove B; Missinne J; Vonck K; Bauwens P; Verplancke R; Boon P; Raedt R; Vanfleteren J
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A drivable optrode for use in chronic electrophysiology and optogenetic experiments.
    Stocke SK; Samuelsen CL
    J Neurosci Methods; 2021 Jan; 348():108979. PubMed ID: 33096153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Electrophysiology and Fiber Photometry in Freely Behaving Mice.
    Patel AA; McAlinden N; Mathieson K; Sakata S
    Front Neurosci; 2020; 14():148. PubMed ID: 32153363
    [No Abstract]   [Full Text] [Related]  

  • 15. Fabrication and modification of implantable optrode arrays for
    Wang L; Huang K; Zhong C; Wang L; Lu Y
    Biophys Rep; 2018; 4(2):82-93. PubMed ID: 29756008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics.
    Lu Y; Li Y; Pan J; Wei P; Liu N; Wu B; Cheng J; Lu C; Wang L
    Biomaterials; 2012 Jan; 33(2):378-94. PubMed ID: 22018384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-based optrode with microstructured fiber tips for controlled light delivery in optogenetics.
    Petrovic J; Lange F; Hohlfeld D
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37080213
    [No Abstract]   [Full Text] [Related]  

  • 18. Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions.
    Wang L; Ge C; Wang F; Guo Z; Hong W; Jiang C; Ji B; Wang M; Li C; Sun B; Liu J
    ACS Sens; 2021 Nov; 6(11):4126-4135. PubMed ID: 34779610
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.