BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29756311)

  • 1. Seed-Surface Grafting Precipitation Polymerization for Preparing Microsized Optically Active Helical Polymer Core/Shell Particles and Their Application in Enantioselective Crystallization.
    Zhao B; Lin J; Deng J; Liu D
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800072. PubMed ID: 29756311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically active particles of chiral polymers.
    Song C; Liu X; Liu D; Ren C; Yang W; Deng J
    Macromol Rapid Commun; 2013 Sep; 34(18):1426-45. PubMed ID: 24030962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.
    Zhao B; Deng J; Deng J
    Macromol Rapid Commun; 2016 Apr; 37(7):568-74. PubMed ID: 26829250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-Defined SiO2@P(EtOx-stat-EI) Core-Shell Hybrid Nanoparticles via Sol-Gel Processes.
    Eckardt O; Pietsch C; Zumann O; von der Lühe M; Brauer DS; Schacher FH
    Macromol Rapid Commun; 2016 Feb; 37(4):337-42. PubMed ID: 26676077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion Polymerization of Substituted Acetylenes in the Presence of Chiral Source for Preparing Monodispersed Chiral Nanoparticles.
    Zhao B; Deng J
    Macromol Rapid Commun; 2018 Apr; 39(7):e1700759. PubMed ID: 29399961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Synthesis of Optically Active and Magnetic Nanoparticles Carrying Helical Poly(phenyl isocyanide) Arms and Their Application in Enantioselective Crystallization.
    Lin YL; Chu JH; Lu HJ; Liu N; Wu ZQ
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29292546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
    Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically active polymer particles with programmable surface microstructures constructed using chiral helical polyacetylene.
    Zhong H; Yang H; Shang J; Zhao B; Deng J
    Nanoscale; 2022 Nov; 14(45):16893-16901. PubMed ID: 36341681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically active porous hybrid particles constructed by alkynylated cellulose nanocrystals, helical substituted polyacetylene, and inorganic silica for enantio-differentiating towards naproxen.
    Zhong H; Zhang Y; Deng J
    Chirality; 2022 Jan; 34(1):48-60. PubMed ID: 34725862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.
    Moraes J; Ohno K; Maschmeyer T; Perrier S
    Chem Commun (Camb); 2013 Oct; 49(80):9077-88. PubMed ID: 23999877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Active Particles with Tunable Morphology: Prepared by Embedding Graphene Oxide/Fe3O4 in Helical Polyacetylene.
    Li W; Deng J
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16273-9. PubMed ID: 27285800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically Active Janus Particles Constructed by Chiral Helical Polymers through Emulsion Polymerization Combined with Solvent Evaporation-Induced Phase Separation.
    Zhang Y; Kang L; Huang H; Deng J
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6319-6327. PubMed ID: 31939279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals.
    Xu X; Asher SA
    J Am Chem Soc; 2004 Jun; 126(25):7940-5. PubMed ID: 15212543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles.
    Gallei M
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of surface imprinted core-shell nanoparticles and their application in a solid-phase dispersion extraction matrix for methyl parathion.
    Tan L; Li W; Li H; Tang Y
    J Chromatogr A; 2014 Apr; 1336():59-66. PubMed ID: 24576608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helix-Sense-Selective Polymerization of Achiral Monomers for the Preparation of Chiral Helical Polyacetylenes Showing Intense CPL in Solid Film State.
    Yang K; Ma S; Zhang Y; Zhao B; Deng J
    Macromol Rapid Commun; 2022 Jun; 43(11):e2200111. PubMed ID: 35429085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.
    Nagao D; Yokoyama M; Yamauchi N; Matsumoto H; Kobayashi Y; Konno M
    Langmuir; 2008 Sep; 24(17):9804-8. PubMed ID: 18652421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.
    Ribeiro T; Fedorov A; Baleizão C; Farinha JP
    J Colloid Interface Sci; 2013 Jul; 401():14-22. PubMed ID: 23622686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell-shell and hollow double-shell microgels with advanced temperature responsiveness.
    Dubbert J; Nothdurft K; Karg M; Richtering W
    Macromol Rapid Commun; 2015 Jan; 36(2):159-64. PubMed ID: 25354836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.
    Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ
    Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.