These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29756315)

  • 1. Silver Nanoflower Decorated Graphene Oxide Sponges for Highly Sensitive Variable Stiffness Stress Sensors.
    Khan FA; Ajmal CM; Bae S; Seo S; Moon H; Baik S
    Small; 2018 Jun; 14(24):e1800549. PubMed ID: 29756315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers.
    Ma R; Kang B; Cho S; Choi M; Baik S
    ACS Nano; 2015 Nov; 9(11):10876-86. PubMed ID: 26485308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of melamine sponge decorated with silver nanoparticles-modified graphene for water disinfection.
    Deng CH; Gong JL; Zhang P; Zeng GM; Song B; Liu HY
    J Colloid Interface Sci; 2017 Feb; 488():26-38. PubMed ID: 27821337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond.
    Zhao S; Guo L; Li J; Li N; Zhang G; Gao Y; Li J; Cao D; Wang W; Jin Y; Sun R; Wong CP
    Small; 2017 Jul; 13(28):. PubMed ID: 28561953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Graphene Sponges Reinforced with Polyimide for Room-Temperature Piezoresistive Sensing.
    Huang J; Wang J; Yang Z; Yang S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8180-8189. PubMed ID: 29417809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration.
    C MA; K P F; Singh S; Baik S
    Sci Rep; 2016 Oct; 6():34894. PubMed ID: 27713510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Soft Robot Tactile Finger Using Oxidation-Reduction Graphene-Polyurethane Conductive Sponge.
    Li H; Ma C; Chen J; Wang H; Chen X; Li Z; Zhang Y
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors.
    Ma Z; Wei A; Ma J; Shao L; Jiang H; Dong D; Ji Z; Wang Q; Kang S
    Nanoscale; 2018 Apr; 10(15):7116-7126. PubMed ID: 29616263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Highly Sensitive Piezoresistive Pressure Sensor Based on Graphene Oxide/Polypyrrole@Polyurethane Sponge.
    Lv B; Chen X; Liu C
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32102211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene/silver nanoflower hybrid coating for improved cycle performance of thermally-operated soft actuators.
    Piao C; Suk JW
    Sci Rep; 2020 Oct; 10(1):17553. PubMed ID: 33067504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Strain Sensor with Tunable Sensitivity via Microscale Electrical Breakdown in Graphene/Polyimide Thin Films.
    Jiang Y; He Q; Cai J; Shen D; Hu X; Zhang D
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58317-58325. PubMed ID: 33320517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets.
    Lin X; Shen X; Zheng Q; Yousefi N; Ye L; Mai YW; Kim JK
    ACS Nano; 2012 Dec; 6(12):10708-19. PubMed ID: 23171230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation.
    Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY
    Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver nanoflowers for single-particle SERS with 10 pM sensitivity.
    Roy S; Muhammed Ajmal C; Baik S; Kim J
    Nanotechnology; 2017 Nov; 28(46):465705. PubMed ID: 28901949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Graphene Composite Containing Graphene-SiO₂ Nanoballs and Its Potential Application in Stress Sensors.
    Zhao B; Sun T; Zhou X; Liu X; Li X; Zhou K; Dong L; Wei D
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30875958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual strain-dependent thermal conductivity modulation of silver nanoflower-polyurethane fibers.
    Jan AA; Suh D; Bae S; Baik S
    Nanoscale; 2018 Sep; 10(37):17799-17806. PubMed ID: 30215658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Oxide Glue-Electrode for Fabrication of Vertical, Elastic, Conductive Columns.
    Yang L; Zou M; Wu S; Xu W; Wu H; Cao A
    ACS Nano; 2017 Mar; 11(3):2944-2951. PubMed ID: 28212488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft, highly conductive nanotube sponges and composites with controlled compressibility.
    Gui X; Cao A; Wei J; Li H; Jia Y; Li Z; Fan L; Wang K; Zhu H; Wu D
    ACS Nano; 2010 Apr; 4(4):2320-6. PubMed ID: 20361757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites.
    Guo Y; Yang X; Ruan K; Kong J; Dong M; Zhang J; Gu J; Guo Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25465-25473. PubMed ID: 31268646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of the Electrical Conductivity of Double-Network Silver Nanowires/Polyimide Porous Low-Density Compressible Sponges.
    Jiang S; Reich S; Uch B; Hu P; Agarwal S; Greiner A
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34286-34293. PubMed ID: 28906100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.