These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 29756386)
1. KRAS mutation and epithelial-macrophage interplay in pancreatic neoplastic transformation. Bishehsari F; Zhang L; Barlass U; Preite NZ; Turturro S; Najor MS; Shetuni BB; Zayas JP; Mahdavinia M; Abukhdeir AM; Keshavarzian A Int J Cancer; 2018 Oct; 143(8):1994-2007. PubMed ID: 29756386 [TBL] [Abstract][Full Text] [Related]
2. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677 [TBL] [Abstract][Full Text] [Related]
3. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas. Chen NM; Singh G; Koenig A; Liou GY; Storz P; Zhang JS; Regul L; Nagarajan S; Kühnemuth B; Johnsen SA; Hebrok M; Siveke J; Billadeau DD; Ellenrieder V; Hessmann E Gastroenterology; 2015 May; 148(5):1024-1034.e9. PubMed ID: 25623042 [TBL] [Abstract][Full Text] [Related]
4. Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis. Nishikawa Y; Kodama Y; Shiokawa M; Matsumori T; Marui S; Kuriyama K; Kuwada T; Sogabe Y; Kakiuchi N; Tomono T; Mima A; Morita T; Ueda T; Tsuda M; Yamauchi Y; Sakuma Y; Ota Y; Maruno T; Uza N; Uesugi M; Kageyama R; Chiba T; Seno H Oncogene; 2019 May; 38(22):4283-4296. PubMed ID: 30705405 [TBL] [Abstract][Full Text] [Related]
5. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Diersch S; Wirth M; Schneeweis C; Jörs S; Geisler F; Siveke JT; Rad R; Schmid RM; Saur D; Rustgi AK; Reichert M; Schneider G Oncogene; 2016 Jul; 35(29):3880-6. PubMed ID: 26592448 [TBL] [Abstract][Full Text] [Related]
6. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy. Kong B; Bruns P; Behler NA; Chang L; Schlitter AM; Cao J; Gewies A; Ruland J; Fritzsche S; Valkovskaya N; Jian Z; Regel I; Raulefs S; Irmler M; Beckers J; Friess H; Erkan M; Mueller NS; Roth S; Hackert T; Esposito I; Theis FJ; Kleeff J; Michalski CW Gut; 2018 Jan; 67(1):146-156. PubMed ID: 27646934 [TBL] [Abstract][Full Text] [Related]
7. Organoid-based ex vivo reconstitution of Kras-driven pancreatic ductal carcinogenesis. Matsuura T; Maru Y; Izumiya M; Hoshi D; Kato S; Ochiai M; Hori M; Yamamoto S; Tatsuno K; Imai T; Aburatani H; Nakajima A; Hippo Y Carcinogenesis; 2020 Jun; 41(4):490-501. PubMed ID: 31233118 [TBL] [Abstract][Full Text] [Related]
8. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations. Sawai Y; Kodama Y; Shimizu T; Ota Y; Maruno T; Eso Y; Kurita A; Shiokawa M; Tsuji Y; Uza N; Matsumoto Y; Masui T; Uemoto S; Marusawa H; Chiba T Cancer Res; 2015 Aug; 75(16):3292-301. PubMed ID: 26113087 [TBL] [Abstract][Full Text] [Related]
9. A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes. Inagawa Y; Yamada K; Yugawa T; Ohno S; Hiraoka N; Esaki M; Shibata T; Aoki K; Saya H; Kiyono T Carcinogenesis; 2014 Aug; 35(8):1840-6. PubMed ID: 24858378 [TBL] [Abstract][Full Text] [Related]
10. Ductal obstruction promotes formation of preneoplastic lesions from the pancreatic ductal compartment. Cheng T; Zhang Z; Jian Z; Raulefs S; Schlitter AM; Steiger K; Maeritz N; Zhao Y; Shen S; Zou X; Ceyhan GO; Friess H; Kleeff J; Michalski CW; Kong B Int J Cancer; 2019 May; 144(10):2529-2538. PubMed ID: 30412288 [TBL] [Abstract][Full Text] [Related]
11. KLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis. Wei D; Wang L; Yan Y; Jia Z; Gagea M; Li Z; Zuo X; Kong X; Huang S; Xie K Cancer Cell; 2016 Mar; 29(3):324-338. PubMed ID: 26977883 [TBL] [Abstract][Full Text] [Related]
12. Oncogenic ERBB2 aberrations and KRAS mutations cooperate to promote pancreatic ductal adenocarcinoma progression. Li Z; Shao C; Liu X; Lu X; Jia X; Zheng X; Wang S; Zhu L; Li K; Pang Y; Xie F; Lu Y; Wang Y Carcinogenesis; 2020 Mar; 41(1):44-55. PubMed ID: 31046123 [TBL] [Abstract][Full Text] [Related]
13. Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Grippo PJ; Nowlin PS; Demeure MJ; Longnecker DS; Sandgren EP Cancer Res; 2003 May; 63(9):2016-9. PubMed ID: 12727811 [TBL] [Abstract][Full Text] [Related]
14. AGR2-Dependent Nuclear Import of RNA Polymerase II Constitutes a Specific Target of Pancreatic Ductal Adenocarcinoma in the Context of Wild-Type p53. Zhang Z; Li H; Deng Y; Schuck K; Raulefs S; Maeritz N; Yu Y; Hechler T; Pahl A; Fernández-Sáiz V; Wan Y; Wang G; Engleitner T; Öllinger R; Rad R; Reichert M; Diakopoulos KN; Weber V; Li J; Shen S; Zou X; Kleeff J; Mihaljevic A; Michalski CW; Algül H; Friess H; Kong B Gastroenterology; 2021 Nov; 161(5):1601-1614.e23. PubMed ID: 34303658 [TBL] [Abstract][Full Text] [Related]
15. Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Grippo PJ; Fitchev PS; Bentrem DJ; Melstrom LG; Dangi-Garimella S; Krantz SB; Heiferman MJ; Chung C; Adrian K; Cornwell ML; Flesche JB; Rao SM; Talamonti MS; Munshi HG; Crawford SE Gut; 2012 Oct; 61(10):1454-64. PubMed ID: 22234980 [TBL] [Abstract][Full Text] [Related]
16. In vivo reprogramming drives Kras-induced cancer development. Shibata H; Komura S; Yamada Y; Sankoda N; Tanaka A; Ukai T; Kabata M; Sakurai S; Kuze B; Woltjen K; Haga H; Ito Y; Kawaguchi Y; Yamamoto T; Yamada Y Nat Commun; 2018 May; 9(1):2081. PubMed ID: 29802314 [TBL] [Abstract][Full Text] [Related]
17. Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions. Lubeseder-Martellato C; Alexandrow K; Hidalgo-Sastre A; Heid I; Boos SL; Briel T; Schmid RM; Siveke JT EBioMedicine; 2017 Feb; 15():90-99. PubMed ID: 28057438 [TBL] [Abstract][Full Text] [Related]
18. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346 [TBL] [Abstract][Full Text] [Related]
19. Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas. Al Saati T; Clerc P; Hanoun N; Peuget S; Lulka H; Gigoux V; Capilla F; Béluchon B; Couvelard A; Selves J; Buscail L; Carrier A; Dusetti N; Dufresne M Am J Pathol; 2013 Jun; 182(6):1996-2004. PubMed ID: 23578383 [TBL] [Abstract][Full Text] [Related]