These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 29756458)
1. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm. Raveh E; Friedman J; Portnoy S Clin Rehabil; 2018 Oct; 32(10):1308-1316. PubMed ID: 29756458 [TBL] [Abstract][Full Text] [Related]
2. Myoelectric Prosthesis Users Improve Performance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback Is Disturbed. Raveh E; Portnoy S; Friedman J Arch Phys Med Rehabil; 2018 Nov; 99(11):2263-2270. PubMed ID: 29935153 [TBL] [Abstract][Full Text] [Related]
3. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand. Raveh E; Friedman J; Portnoy S Assist Technol; 2018; 30(5):274-280. PubMed ID: 28628379 [TBL] [Abstract][Full Text] [Related]
4. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Witteveen HJ; Rietman HS; Veltink PH Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348 [TBL] [Abstract][Full Text] [Related]
5. Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. Raveh E; Portnoy S; Friedman J Hum Mov Sci; 2018 Apr; 58():32-40. PubMed ID: 29353091 [TBL] [Abstract][Full Text] [Related]
6. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand. Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161 [TBL] [Abstract][Full Text] [Related]
7. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses. Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497 [TBL] [Abstract][Full Text] [Related]
8. Intraneural sensory feedback restores grip force control and motor coordination while using a prosthetic hand. Clemente F; Valle G; Controzzi M; Strauss I; Iberite F; Stieglitz T; Granata G; Rossini PM; Petrini F; Micera S; Cipriani C J Neural Eng; 2019 Apr; 16(2):026034. PubMed ID: 30736030 [TBL] [Abstract][Full Text] [Related]
9. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis. Thomas N; Ung G; McGarvey C; Brown JD J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005 [TBL] [Abstract][Full Text] [Related]
10. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Dosen S; Markovic M; Somer K; Graimann B; Farina D J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323 [TBL] [Abstract][Full Text] [Related]
11. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees. Guémann M; Halgand C; Bastier A; Lansade C; Borrini L; Lapeyre É; Cattaert D; de Rugy A J Neuroeng Rehabil; 2022 Jun; 19(1):59. PubMed ID: 35690860 [TBL] [Abstract][Full Text] [Related]
12. Hand-opening feedback for myoelectric forearm prostheses: performance in virtual grasping tasks influenced by different levels of distraction. Witteveen HJ; de Rond L; Rietman JS; Veltink PH J Rehabil Res Dev; 2012; 49(10):1517-26. PubMed ID: 23516055 [TBL] [Abstract][Full Text] [Related]
13. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation. Stepp CE; Matsuoka Y Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2089-92. PubMed ID: 21095683 [TBL] [Abstract][Full Text] [Related]
14. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929 [TBL] [Abstract][Full Text] [Related]
15. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis. Wilke MA; Niethammer C; Meyer B; Farina D; Dosen S J Neuroeng Rehabil; 2019 Dec; 16(1):155. PubMed ID: 31823792 [TBL] [Abstract][Full Text] [Related]
16. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625 [TBL] [Abstract][Full Text] [Related]
17. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. Markovic M; Schweisfurth MA; Engels LF; Bentz T; Wüstefeld D; Farina D; Dosen S J Neuroeng Rehabil; 2018 Mar; 15(1):28. PubMed ID: 29580245 [TBL] [Abstract][Full Text] [Related]
18. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. Witteveen HJ; Droog EA; Rietman JS; Veltink PH IEEE Trans Biomed Eng; 2012 Aug; 59(8):2219-26. PubMed ID: 22645262 [TBL] [Abstract][Full Text] [Related]
19. Haptic shared control improves neural efficiency during myoelectric prosthesis use. Thomas N; Miller AJ; Ayaz H; Brown JD Sci Rep; 2023 Jan; 13(1):484. PubMed ID: 36627340 [TBL] [Abstract][Full Text] [Related]
20. Closed-Loop Force Control by Biorealistic Hand Prosthesis With Visual and Tactile Sensory Feedback. Zhang Z; Xie A; Chou CH; Liang W; Zhang J; Bi S; Lan N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2939-2949. PubMed ID: 39110556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]