These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29756458)

  • 21. Alpha-band activity in parietofrontal cortex predicts future availability of vibrotactile feedback in prosthesis use.
    Johnson JT; de Mari D; Doherty H; Hammond FL; Wheaton LA
    Exp Brain Res; 2022 May; 240(5):1387-1398. PubMed ID: 35257195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand.
    Chai G; Wang H; Li G; Sheng X; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrotactile EMG feedback improves the control of prosthesis grasping force.
    Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D
    J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
    Stepp CE; An Q; Matsuoka Y
    PLoS One; 2012; 7(2):e32743. PubMed ID: 22384283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
    De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D
    Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Different Tactile Feedback on Myoelectric Closed-Loop Control for Grasping Based on Electrotactile Stimulation.
    Xu H; Zhang D; Huegel JC; Xu W; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):827-36. PubMed ID: 26372430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing vibrotactile feedback strategies by controlling a cursor with unstable dynamics.
    Quick KM; Card NS; Whaite SM; Mischel J; Loughlin P; Batista AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2589-92. PubMed ID: 25570520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.
    Gonzalez J; Soma H; Sekine M; Yu W
    J Neuroeng Rehabil; 2012 Jun; 9():33. PubMed ID: 22682425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback.
    Tchimino J; Markovic M; Dideriksen JL; Dosen S
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34082406
    [No Abstract]   [Full Text] [Related]  

  • 32. The impact of objective functions on control policies in closed-loop control of grasping force with a myoelectric prosthesis.
    Mamidanna P; Dideriksen JL; Dosen S
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34479219
    [No Abstract]   [Full Text] [Related]  

  • 33. A Novel Sensory Feedback Approach to Facilitate Both Predictive and Corrective Control of Grasping Force in Myoelectric Prostheses.
    Gasparic F; Jorgovanovic N; Hofer C; Russold MF; Koppe M; Stanisic D; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4492-4503. PubMed ID: 37930904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stiffness Feedback for Myoelectric Forearm Prostheses Using Vibrotactile Stimulation.
    Witteveen HJ; Luft F; Rietman JS; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):53-61. PubMed ID: 23799698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.
    Strbac M; Isakovic M; Belic M; Popovic I; Simanic I; Farina D; Keller T; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2133-2145. PubMed ID: 28600254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses.
    Dosen S; Markovic M; Strbac M; Belic M; Kojic V; Bijelic G; Keller T; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):183-195. PubMed ID: 27071179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wrist speed feedback improves elbow compensation and reaching accuracy for myoelectric transradial prosthesis users in hybrid virtual reaching task.
    Earley EJ; Johnson RE; Sensinger JW; Hargrove LJ
    J Neuroeng Rehabil; 2023 Jan; 20(1):9. PubMed ID: 36658605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Utility of Synthetic Reflexes and Haptic Feedback for Upper-Limb Prostheses in a Dexterous Task Without Direct Vision.
    Thomas N; Fazlollahi F; Kuchenbecker KJ; Brown JD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():169-179. PubMed ID: 36346869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback.
    Antfolk C; D'Alonzo M; Controzzi M; Lundborg G; Rosén B; Sebelius F; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):112-20. PubMed ID: 23033439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.