These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29756698)

  • 1. [Engineering of a flavonoid 3'-hydroxylase from tea plant (Camellia sinensis) for biosynthesis of B-3',4'-dihydroxylated flavones].
    Zhou T; Yu Y; Xiao B; Bao L; Gao Y
    Wei Sheng Wu Xue Bao; 2017 Mar; 57(3):447-58. PubMed ID: 29756698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and Characterization of a Flavonoid 3'-Hydroxylase Gene from Tea Plant (Camellia sinensis).
    Zhou TS; Zhou R; Yu YB; Xiao Y; Li DH; Xiao B; Yu O; Yang YJ
    Int J Mol Sci; 2016 Feb; 17(2):261. PubMed ID: 26907264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylases from tea plant (Camellia sinensis), involved in the B-ring hydroxylation of flavonoids.
    Guo L; Gao L; Ma X; Guo F; Ruan H; Bao Y; Xia T; Wang Y
    Gene; 2019 Oct; 717():144046. PubMed ID: 31434006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of flavonoid 3'-hydroxylase, CsF3'H, from Crocus sativus L: Insights into substrate specificity and role in abiotic stress.
    Baba SA; Ashraf N
    Arch Biochem Biophys; 2019 May; 667():70-78. PubMed ID: 31054842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Analysis of Two Flavanone-3-Hydroxylase Genes from Camellia sinensis: A Critical Role in Flavonoid Accumulation.
    Han Y; Huang K; Liu Y; Jiao T; Ma G; Qian Y; Wang P; Dai X; Gao L; Xia T
    Genes (Basel); 2017 Oct; 8(11):. PubMed ID: 29088063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of flavonoid 3',5'-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins.
    Wang YS; Xu YJ; Gao LP; Yu O; Wang XZ; He XJ; Jiang XL; Liu YJ; Xia T
    BMC Plant Biol; 2014 Dec; 14():347. PubMed ID: 25490984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and Functional Characterization of Multiple NADPH-Cytochrome P450 Reductase Genes from
    Huang R; Liu L; He X; Wang W; Hou Y; Chen J; Li Y; Zhou H; Tian T; Wang W; Xu Q; Yu Y; Zhou T
    J Agric Food Chem; 2021 Dec; 69(49):14926-14937. PubMed ID: 34859673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli.
    Miyahisa I; Funa N; Ohnishi Y; Martens S; Moriguchi T; Horinouchi S
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):53-8. PubMed ID: 16133333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae.
    Leonard E; Yan Y; Lim KH; Koffas MA
    Appl Environ Microbiol; 2005 Dec; 71(12):8241-8. PubMed ID: 16332809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli.
    Leonard E; Yan Y; Koffas MA
    Metab Eng; 2006 Mar; 8(2):172-81. PubMed ID: 16384722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis).
    Singh K; Rani A; Kumar S; Sood P; Mahajan M; Yadav SK; Singh B; Ahuja PS
    Tree Physiol; 2008 Sep; 28(9):1349-56. PubMed ID: 18595847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5.
    Urban P; Mignotte C; Kazmaier M; Delorme F; Pompon D
    J Biol Chem; 1997 Aug; 272(31):19176-86. PubMed ID: 9235908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Saccharomyces cerevisiae for the production of dihydroquercetin from naringenin.
    Yu S; Li M; Gao S; Zhou J
    Microb Cell Fact; 2022 Oct; 21(1):213. PubMed ID: 36243863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a heat responsive UDP: Flavonoid glucosyltransferase gene in tea plant (Camellia sinensis).
    Su X; Wang W; Xia T; Gao L; Shen G; Pang Y
    PLoS One; 2018; 13(11):e0207212. PubMed ID: 30475819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Cloning and Characterization of Hydroperoxide Lyase Gene in the Leaves of Tea Plant (Camellia sinensis).
    Deng WW; Wu YL; Li YY; Tan Z; Wei CL
    J Agric Food Chem; 2016 Mar; 64(8):1770-6. PubMed ID: 26886573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Analysis Reveals Key Flavonoid 3'-Hydroxylase and Flavonoid 3',5'-Hydroxylase Genes in Affecting the Ratio of Dihydroxylated to Trihydroxylated Catechins in Camellia sinensis.
    Wei K; Wang L; Zhang C; Wu L; Li H; Zhang F; Cheng H
    PLoS One; 2015; 10(9):e0137925. PubMed ID: 26367395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing cytochrome P450 enzymes involved in plant apocarotenoid metabolism by using an engineered yeast system.
    Alagoz Y; Mi J; Balakrishna A; Almarwaey L; Al-Babili S
    Methods Enzymol; 2022; 671():527-552. PubMed ID: 35878993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Characterization of a New Tea (Camellia sinensis) Flavonoid Glycosyltransferase.
    Zhao X; Wang P; Li M; Wang Y; Jiang X; Cui L; Qian Y; Zhuang J; Gao L; Xia T
    J Agric Food Chem; 2017 Mar; 65(10):2074-2083. PubMed ID: 28220704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase.
    Miki Y; Asano Y
    Appl Environ Microbiol; 2014 Nov; 80(21):6828-36. PubMed ID: 25172862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene.
    Makino T; Otomatsu T; Shindo K; Kitamura E; Sandmann G; Harada H; Misawa N
    Microb Cell Fact; 2012 Jul; 11():95. PubMed ID: 22809492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.