These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29756768)

  • 1. Facile Soaking Strategy Toward Simultaneously Enhanced Conductivity and Toughness of Self-Healing Composite Hydrogels Through Constructing Multiple Noncovalent Interactions.
    Wang S; Guo G; Lu X; Ji S; Tan G; Gao L
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19133-19142. PubMed ID: 29756768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning.
    Zhu F; Lin J; Wu ZL; Qu S; Yin J; Qian J; Zheng Q
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13685-13692. PubMed ID: 29608271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Conductive Self-Healing Double Network Hydrogel with Toughness and Force Sensitivity.
    Liu S; Li K; Hussain I; Oderinde O; Yao F; Zhang J; Fu G
    Chemistry; 2018 May; 24(25):6632-6638. PubMed ID: 29532585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors.
    Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors.
    Liang Y; Ye L; Sun X; Lv Q; Liang H
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a High-Strength, Tough, Swelling-Resistant, Conductive Hydrogel via Ion Cross-Linking, Directional Freeze-Drying, and Rehydration.
    Luo J; Wang H; Wang J; Chen Y; Li C; Zhong K; Xiang J; Jia P
    ACS Biomater Sci Eng; 2023 May; 9(5):2694-2705. PubMed ID: 37000674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor.
    Ding H; Liang X; Wang Q; Wang M; Li Z; Sun G
    Carbohydr Polym; 2020 Nov; 248():116797. PubMed ID: 32919535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors.
    Cui C; Shao C; Meng L; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39228-39237. PubMed ID: 31550132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor.
    Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Electrically and Mechanically Autonomic Self-healing Hybrid Hydrogel with Tough and Thermoplastic Properties.
    He X; Zhang C; Wang M; Zhang Y; Liu L; Yang W
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11134-11143. PubMed ID: 28276239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion.
    Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J
    Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors.
    Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J
    Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Sensitive Strain Sensor Based on a Stretchable and Conductive Poly(vinyl alcohol)/Phytic Acid/NH
    Shao L; Li Y; Ma Z; Bai Y; Wang J; Zeng P; Gong P; Shi F; Ji Z; Qiao Y; Xu R; Xu J; Zhang G; Wang C; Ma J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26496-26508. PubMed ID: 32406670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance.
    Pan C; Liu L; Chen Q; Zhang Q; Guo G
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):38052-38061. PubMed ID: 29019393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically Tough and Conductive Hydrogels Based on Gelatin and Z-Gln-Gly Generated by Microbial Transglutaminase.
    Chen Z; Zhang R; Zhao S; Li B; Wang S; Lu W; Zhu D
    Polymers (Basel); 2024 Apr; 16(7):. PubMed ID: 38611257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy.
    Lu J; Hu O; Hou L; Ye D; Weng S; Jiang X
    Int J Biol Macromol; 2022 Nov; 221():1002-1011. PubMed ID: 36113584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-induced orientation facilitates the fabrication of highly stretchable and tough xylan-based hydrogel for strain sensors.
    Hu L; Xie Y; Gao S; Shi X; Lai C; Zhang D; Lu C; Liu Y; Du L; Fang X; Xu F; Wang C; Chu F
    Carbohydr Polym; 2023 Jul; 312():120827. PubMed ID: 37059554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine/polystyrene nanocomposite double-layer strain sensor hydrogel with mechanical, self-healing, adhesive and conductive properties.
    Han L; Liu M; Yan B; Li Y; Lan J; Shi L; Ran R
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110567. PubMed ID: 32229002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive Tough Hydrogels with a Staggered Ion-Coordinating Structure for High Self-Recovery Rate.
    Tran VT; Mredha MTI; Pathak SK; Yoon H; Cui J; Jeon I
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24598-24608. PubMed ID: 31246394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.