These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29756824)

  • 1. Single-Atom Heat Machines Enabled by Energy Quantization.
    Gelbwaser-Klimovsky D; Bylinskii A; Gangloff D; Islam R; Aspuru-Guzik A; Vuletic V
    Phys Rev Lett; 2018 Apr; 120(17):170601. PubMed ID: 29756824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement-induced operation of two-ion quantum heat machines.
    Chand S; Biswas A
    Phys Rev E; 2017 Mar; 95(3-1):032111. PubMed ID: 28415299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Otto engine of a two-level atom with single-mode fields.
    Wang J; Wu Z; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041148. PubMed ID: 22680458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two coupled double quantum-dot systems as a working substance for heat machines.
    de Oliveira JLD; Rojas M; Filgueiras C
    Phys Rev E; 2021 Jul; 104(1-1):014149. PubMed ID: 34412368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis of heat-to-work conversion in quantum machines.
    Ghosh A; Latune CL; Davidovich L; Kurizki G
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12156-12161. PubMed ID: 29087326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayer Graphene as an Endoreversible Otto Engine.
    Myers NM; Peña FJ; Cortés N; Vargas P
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical control of quantum heat engines using exceptional points.
    Zhang JW; Zhang JQ; Ding GY; Li JC; Bu JT; Wang B; Yan LL; Su SL; Chen L; Nori F; Özdemir ŞK; Zhou F; Jing H; Feng M
    Nat Commun; 2022 Oct; 13(1):6225. PubMed ID: 36266331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Work and efficiency of quantum Otto cycles in power-law trapping potentials.
    Zheng Y; Poletti D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012145. PubMed ID: 25122289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS; Batalhão TB; Herrera M; Souza AM; Sarthour RS; Oliveira IS; Serra RM
    Phys Rev Lett; 2019 Dec; 123(24):240601. PubMed ID: 31922824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Performance of Thermal Machines over Many Cycles.
    Watanabe G; Venkatesh BP; Talkner P; Del Campo A
    Phys Rev Lett; 2017 Feb; 118(5):050601. PubMed ID: 28211713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F; Müstecaplıoğlu ÖE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum absorption refrigerator with trapped ions.
    Maslennikov G; Ding S; Hablützel R; Gan J; Roulet A; Nimmrichter S; Dai J; Scarani V; Matsukevich D
    Nat Commun; 2019 Jan; 10(1):202. PubMed ID: 30643131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach.
    Peña FJ; Negrete O; Alvarado Barrios G; Zambrano D; González A; Nunez AS; Orellana PA; Vargas P
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing coherent quantum thermodynamics using a trapped ion.
    Onishchenko O; Guarnieri G; Rosillo-Rodes P; Pijn D; Hilder J; Poschinger UG; Perarnau-Llobet M; Eisert J; Schmidt-Kaler F
    Nat Commun; 2024 Aug; 15(1):6974. PubMed ID: 39143048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning.
    Erdman PA; Noé F
    PNAS Nexus; 2023 Aug; 2(8):pgad248. PubMed ID: 37593201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Otto heat engine with Pöschl-Teller potential in contact with coherent thermal bath.
    Abasabadi SH; Mirafzali SY; Baghshahi HR
    Sci Rep; 2023 Jun; 13(1):10522. PubMed ID: 37386051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-space interference in extensive and nonextensive quantum heat engines.
    Hardal AÜC; Paternostro M; Müstecaplıoğlu ÖE
    Phys Rev E; 2018 Apr; 97(4-1):042127. PubMed ID: 29758690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical emulation of quantum-coherent thermal machines.
    González JO; Palao JP; Alonso D; Correa LA
    Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.