These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Universality and quantum criticality in quasiperiodic spin chains. Agrawal U; Gopalakrishnan S; Vasseur R Nat Commun; 2020 May; 11(1):2225. PubMed ID: 32376859 [TBL] [Abstract][Full Text] [Related]
3. Quantum Criticality in the 2D Quasiperiodic Potts Model. Agrawal U; Gopalakrishnan S; Vasseur R Phys Rev Lett; 2020 Dec; 125(26):265702. PubMed ID: 33449710 [TBL] [Abstract][Full Text] [Related]
4. Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions. Alves GA; Vasconcelos MS; Alves TF Phys Rev E; 2016 Apr; 93(4):042111. PubMed ID: 27176258 [TBL] [Abstract][Full Text] [Related]
5. Universal Properties of Many-Body Localization Transitions in Quasiperiodic Systems. Zhang SX; Yao H Phys Rev Lett; 2018 Nov; 121(20):206601. PubMed ID: 30500254 [TBL] [Abstract][Full Text] [Related]
6. Quantum effects on criticality of an Ising model in scale-free networks: Beyond mean-field universality class. Yi H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):012103. PubMed ID: 20365414 [TBL] [Abstract][Full Text] [Related]
7. Critical behavior of the three-dimensional Ising model with anisotropic bond randomness at the ferromagnetic-paramagnetic transition line. Papakonstantinou T; Malakis A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012132. PubMed ID: 23410308 [TBL] [Abstract][Full Text] [Related]
8. Vector chiral phases in the frustrated 2D XY model and quantum spin chains. Schenck H; Pokrovsky VL; Nattermann T Phys Rev Lett; 2014 Apr; 112(15):157201. PubMed ID: 24785067 [TBL] [Abstract][Full Text] [Related]
10. Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness. Malakis A; Berker AN; Hadjiagapiou IA; Fytas NG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011125. PubMed ID: 19257019 [TBL] [Abstract][Full Text] [Related]
11. Universal dependence on disorder of two-dimensional randomly diluted and random-bond +/-J Ising models. Hasenbusch M; Toldin FP; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011110. PubMed ID: 18763922 [TBL] [Abstract][Full Text] [Related]
12. Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry. Coldea R; Tennant DA; Wheeler EM; Wawrzynska E; Prabhakaran D; Telling M; Habicht K; Smeibidl P; Kiefer K Science; 2010 Jan; 327(5962):177-80. PubMed ID: 20056884 [TBL] [Abstract][Full Text] [Related]
13. Symmetry Breaking Bias and the Dynamics of a Quantum Phase Transition. Rams MM; Dziarmaga J; Zurek WH Phys Rev Lett; 2019 Sep; 123(13):130603. PubMed ID: 31697549 [TBL] [Abstract][Full Text] [Related]
14. Unconventional quantum criticality emerging as a new common language of transition-metal compounds, heavy-fermion systems, and organic conductors. Imada M; Misawa T; Yamaji Y J Phys Condens Matter; 2010 Apr; 22(16):164206. PubMed ID: 21386412 [TBL] [Abstract][Full Text] [Related]
15. Quantum Phase Transition in the One-Dimensional Water Chain. Serwatka T; Melko RG; Burkov A; Roy PN Phys Rev Lett; 2023 Jan; 130(2):026201. PubMed ID: 36706406 [TBL] [Abstract][Full Text] [Related]
16. Quantum phase transitions in the Ising model in a spatially modulated field. Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016112. PubMed ID: 11304319 [TBL] [Abstract][Full Text] [Related]
17. Induced random fields in the LiHoxY1-xF4 quantum Ising magnet in a transverse magnetic field. Tabei SM; Gingras MJ; Kao YJ; Stasiak P; Fortin JY Phys Rev Lett; 2006 Dec; 97(23):237203. PubMed ID: 17280239 [TBL] [Abstract][Full Text] [Related]
18. Strong interaction effects and criticality of bosons in shaken optical lattices. Zheng W; Liu B; Miao J; Chin C; Zhai H Phys Rev Lett; 2014 Oct; 113(15):155303. PubMed ID: 25375720 [TBL] [Abstract][Full Text] [Related]
19. Phase transitions and multicritical behavior in the Ising model with dipolar interactions. Bab MA; Horowitz CM; Rubio Puzzo ML; Saracco GP Phys Rev E; 2016 Oct; 94(4-1):042104. PubMed ID: 27841499 [TBL] [Abstract][Full Text] [Related]
20. Phase transition in the 2D random Potts model in the large-q limit. Anglès d'Auriac JC; Iglói F Phys Rev Lett; 2003 May; 90(19):190601. PubMed ID: 12785935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]