These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29756876)

  • 1. Data-Driven Learning of Total and Local Energies in Elemental Boron.
    Deringer VL; Pickard CJ; Csányi G
    Phys Rev Lett; 2018 Apr; 120(15):156001. PubMed ID: 29756876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven learning and prediction of inorganic crystal structures.
    Deringer VL; Proserpio DM; Csányi G; Pickard CJ
    Faraday Discuss; 2018 Oct; 211(0):45-59. PubMed ID: 30043006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic stability of boron: the role of defects and zero point motion.
    van Setten MJ; Uijttewaal MA; de Wijs GA; de Groot RA
    J Am Chem Soc; 2007 Mar; 129(9):2458-65. PubMed ID: 17295480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictions of Boron Phase Stability Using an Efficient Bayesian Machine Learning Interatomic Potential.
    Deng H; Liu B
    J Phys Chem Lett; 2024 Mar; 15(9):2419-2427. PubMed ID: 38394626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures.
    Fujikake S; Deringer VL; Lee TH; Krynski M; Elliott SR; Csányi G
    J Chem Phys; 2018 Jun; 148(24):241714. PubMed ID: 29960342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining phonon accuracy with high transferability in Gaussian approximation potential models.
    George J; Hautier G; Bartók AP; Csányi G; Deringer VL
    J Chem Phys; 2020 Jul; 153(4):044104. PubMed ID: 32752705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies.
    Meldgaard SA; Kolsbjerg EL; Hammer B
    J Chem Phys; 2018 Oct; 149(13):134104. PubMed ID: 30292199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alchemical and structural distribution based representation for universal quantum machine learning.
    Faber FA; Christensen AS; Huang B; von Lilienfeld OA
    J Chem Phys; 2018 Jun; 148(24):241717. PubMed ID: 29960351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of new superhard boron-rich compounds.
    Gao F; Qin X; Wang L; He Y; Sun G; Hou L; Wang W
    J Phys Chem B; 2005 Aug; 109(31):14892-5. PubMed ID: 16852886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically Structured Allotropes of Phosphorus from Data-Driven Exploration.
    Deringer VL; Pickard CJ; Proserpio DM
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):15880-15885. PubMed ID: 32497368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transferable active-learning strategy for reactive molecular force fields.
    Young TA; Johnston-Wood T; Deringer VL; Duarte F
    Chem Sci; 2021 Aug; 12(32):10944-10955. PubMed ID: 34476072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of phase stability of elemental boron.
    White MA; Cerqueira AB; Whitman CA; Johnson MB; Ogitsu T
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3626-9. PubMed ID: 25619645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atom-atom partitioning of total (super)molecular energy: the hidden terms of classical force fields.
    Rafat M; Popelier PL
    J Comput Chem; 2007 Jan; 28(1):292-301. PubMed ID: 17109431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian Process Regression for Materials and Molecules.
    Deringer VL; Bartók AP; Bernstein N; Wilkins DM; Ceriotti M; Csányi G
    Chem Rev; 2021 Aug; 121(16):10073-10141. PubMed ID: 34398616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian approximation potentials: Theory, software implementation and application examples.
    Klawohn S; Darby JP; Kermode JR; Csányi G; Caro MA; Bartók AP
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37929869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning interatomic potential for W-Mo alloys.
    Nikoulis G; Byggmästar J; Kioseoglou J; Nordlund K; Djurabekova F
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34020426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embedded-atom method interatomic potential for boron nanostructures.
    Zalizniak VE; Zolotov OA
    J Mol Model; 2019 May; 25(6):165. PubMed ID: 31104142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty-driven dynamics for active learning of interatomic potentials.
    Kulichenko M; Barros K; Lubbers N; Li YW; Messerly R; Tretiak S; Smith JS; Nebgen B
    Nat Comput Sci; 2023 Mar; 3(3):230-239. PubMed ID: 38177878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.