BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29756901)

  • 1. Elasticity in Physically Cross-Linked Amyloid Fibril Networks.
    Cao Y; Bolisetty S; Adamcik J; Mezzenga R
    Phys Rev Lett; 2018 Apr; 120(15):158103. PubMed ID: 29756901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal behavior in the mesoscale properties of amyloid fibrils.
    Assenza S; Adamcik J; Mezzenga R; De Los Rios P
    Phys Rev Lett; 2014 Dec; 113(26):268103. PubMed ID: 25615390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic properties of semiflexible amyloid fibrils.
    Sagis LM; Veerman C; van der Linden E
    Langmuir; 2004 Feb; 20(3):924-7. PubMed ID: 15773124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption at liquid interfaces induces amyloid fibril bending and ring formation.
    Jordens S; Riley EE; Usov I; Isa L; Olmsted PD; Mezzenga R
    ACS Nano; 2014 Nov; 8(11):11071-9. PubMed ID: 25338060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths.
    Bolisetty S; Harnau L; Jung JM; Mezzenga R
    Biomacromolecules; 2012 Oct; 13(10):3241-52. PubMed ID: 22924940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces.
    Jordens S; Rühs PA; Sieber C; Isa L; Fischer P; Mezzenga R
    Langmuir; 2014 Aug; 30(33):10090-7. PubMed ID: 25100189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-persistence-length complex scaling behavior in lysozyme amyloid fibrils.
    Lara C; Usov I; Adamcik J; Mezzenga R
    Phys Rev Lett; 2011 Dec; 107(23):238101. PubMed ID: 22182128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic analysis of aggregates from 38 kinds of non disease-related proteins: identifying the intrinsic propensity of polypeptides to form amyloid fibrils.
    Aso Y; Shiraki K; Takagi M
    Biosci Biotechnol Biochem; 2007 May; 71(5):1313-21. PubMed ID: 17485839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic-Interaction-Induced Stiffening of α-Synuclein Fibril Networks.
    Semerdzhiev SA; Lindhoud S; Stefanovic A; Subramaniam V; van der Schoot P; Claessens MMAE
    Phys Rev Lett; 2018 May; 120(20):208102. PubMed ID: 29864360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme.
    Wawer J; Szociński M; Olszewski M; Piątek R; Naczk M; Krakowiak J
    Int J Biol Macromol; 2019 Jan; 121():63-70. PubMed ID: 30290259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whey protein nanofibrils: the environment-morphology-functionality relationship in lyophilization, rehydration, and seeding.
    Loveday SM; Su J; Rao MA; Anema SG; Singh H
    J Agric Food Chem; 2012 May; 60(20):5229-36. PubMed ID: 22519579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled amyloid fibrils with controllable conformational heterogeneity.
    Lee G; Lee W; Lee H; Lee CY; Eom K; Kwon T
    Sci Rep; 2015 Nov; 5():16220. PubMed ID: 26592772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematic field transfer in a two-dimensional protein fibril assembly.
    Jordens S; Schwenke K; Usov I; Del Gado E; Mezzenga R
    Soft Matter; 2016 Feb; 12(6):1830-5. PubMed ID: 26738771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear flow induces amyloid fibril formation.
    Hill EK; Krebs B; Goodall DG; Howlett GJ; Dunstan DE
    Biomacromolecules; 2006 Jan; 7(1):10-3. PubMed ID: 16398490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of intermolecular forces in defining material properties of protein nanofibrils.
    Knowles TP; Fitzpatrick AW; Meehan S; Mott HR; Vendruscolo M; Dobson CM; Welland ME
    Science; 2007 Dec; 318(5858):1900-3. PubMed ID: 18096801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme.
    Vernaglia BA; Huang J; Clark ED
    Biomacromolecules; 2004; 5(4):1362-70. PubMed ID: 15244452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle tracking microrheology of gel-forming amyloid fibril networks.
    Corrigan AM; Donald AM
    Eur Phys J E Soft Matter; 2009 Apr; 28(4):457-62. PubMed ID: 19333633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.