These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29757206)

  • 41. Ambient-temperature time-dependent deformation of cast and additive manufactured Al-Cu-Mg-Ag-TiB
    Shakil SI; Zoeram AS; Avateffazeli M; Roscher M; Pirgazi H; Shalchi-Amirkhiz B; Poorganji B; Mohammadi M; Haghshenas M
    Micron; 2022 May; 156():103246. PubMed ID: 35316740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion.
    Skowrońska B; Chmielewski T; Kulczyk M; Skiba J; Przybysz S
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33801045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2018 May; 108():11-18. PubMed ID: 29544163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on the Microstructure Evolution and Tungsten Content Optimization of 9Cr-3W-3Co Steel.
    Ma L; Wang Y; Di G
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30355972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural integrity assessment of Inconel 617/P92 steel dissimilar welds for different groove geometry.
    Kumar A; Pandey C
    Sci Rep; 2023 May; 13(1):8061. PubMed ID: 37198282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C.
    Xu L; He Y; Kang Y; Jung JS; Shin K
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microstructure and Mechanical Properties of Intercritically Treated Grade 91 Steel.
    Wang Y; Zhang W; Lim YC; Wang Y; Feng Z
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32927624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Data-based selection of creep constitutive models for high-Cr heat-resistant steel.
    Izuno H; Demura M; Tabuchi M; Mototake YI; Okada M
    Sci Technol Adv Mater; 2020; 21(1):219-228. PubMed ID: 32489481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Creep behavior and in-depth microstructural characterization of dissimilar joints.
    Kauffmann F; Klein T; Klenk A; Maile K
    Sci Technol Adv Mater; 2013 Feb; 14(1):014203. PubMed ID: 27877551
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel.
    Du C; Liu G; Sun B; Xin S; Shen T
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260803
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The microstructure and creep behavior of cold rolled udimet 188 sheet.
    Boehlert CJ; Longanbach SC
    Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stress-Controlled Creep-Fatigue of an Advanced Austenitic Stainless Steel at Elevated Temperatures.
    Alsmadi ZY; Abouelella H; Alomari AS; Murty KL
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683282
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalog of NIMS creep data sheets.
    Sawada K; Kimura K; Abe F; Taniuchi Y; Sekido K; Nojima T; Ohba T; Kushima H; Miyazaki H; Hongo H; Watanabe T
    Sci Technol Adv Mater; 2019; 20(1):1131-1149. PubMed ID: 32082436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characteristic Features of Ultrafine-Grained Ti-45 wt.% Nb Alloy under High Cycle Fatigue.
    Mairambekova AM; Eroshenko AY; Oborin VA; Bannikov MV; Chebodaeva VV; Terekhina AI; Naimark OB; Dmitriev AI; Sharkeev YP
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Boron on the Microstructure, Superplastic Behavior, and Mechanical Properties of Ti-4Al-3Mo-1V Alloy.
    Postnikova MN; Kotov AD; Bazlov AI; Mosleh AO; Medvedeva SV; Mikhaylovskaya AV
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241341
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laves Phase in a 12% Cr Martensitic/Ferritic Steel: Evolution and Characterization of Nanoparticles at 650 °C.
    Sanhueza JP; Rojas D; Prat O; Garcia J; Melendrez M
    J Nanosci Nanotechnol; 2019 May; 19(5):2971-2976. PubMed ID: 30501807
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation.
    van Rooyen M; Becker T; Westraadt J; Marx G
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31554172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fire resistance of low alloy Q420d high-strength steel column under high-temperature creep.
    Zhu J; Xing M; Mao X; Sheng D
    Sci Prog; 2023; 106(2):368504231175712. PubMed ID: 37328172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Long-Term Thermal Aging on Microstructure Evolution and Creep Deformation Behavior of a Novel 11Cr-3W-3Co Martensite Ferritic Steel.
    Zhao H; Han X; Wang M; Wang Z
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.