BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29757606)

  • 1. Monobody-Mediated Alteration of Lipase Substrate Specificity.
    Tanaka SI; Takahashi T; Koide A; Iwamoto R; Koikeda S; Koide S
    ACS Chem Biol; 2018 Jun; 13(6):1487-1492. PubMed ID: 29757606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites.
    Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF
    J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes.
    Brocca S; Secundo F; Ossola M; Alberghina L; Carrea G; Lotti M
    Protein Sci; 2003 Oct; 12(10):2312-9. PubMed ID: 14500889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity.
    Schmitt J; Brocca S; Schmid RD; Pleiss J
    Protein Eng; 2002 Jul; 15(7):595-601. PubMed ID: 12200542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase.
    Grochulski P; Bouthillier F; Kazlauskas RJ; Serreqi AN; Schrag JD; Ziomek E; Cygler M
    Biochemistry; 1994 Mar; 33(12):3494-500. PubMed ID: 8142346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monobody-mediated alteration of enzyme specificity.
    Tanaka S; Takahashi T; Koide A; Ishihara S; Koikeda S; Koide S
    Nat Chem Biol; 2015 Oct; 11(10):762-4. PubMed ID: 26322825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters.
    Yen CC; Malmis CC; Lee GC; Lee LC; Shaw JF
    J Agric Food Chem; 2010 Oct; 58(20):10899-905. PubMed ID: 20873770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols.
    Holmquist M; Haeffner F; Norin T; Hult K
    Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant expression of the Candida rugosa lip4 lipase in Escherichia coli.
    Tang SJ; Sun KH; Sun GH; Chang TY; Lee GC
    Protein Expr Purif; 2000 Nov; 20(2):308-13. PubMed ID: 11049754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Semiautomated Structure-Based Method To Predict Substrates of Enzymes via Molecular Docking: A Case Study with Candida antarctica Lipase B.
    Yao Z; Zhang L; Gao B; Cui D; Wang F; He X; Zhang JZ; Wei D
    J Chem Inf Model; 2016 Oct; 56(10):1979-1994. PubMed ID: 27529495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity and kinetics of Candida rugosa lipase in organic media.
    Janssen AE; Vaidya AM; Halling PJ
    Ann N Y Acad Sci; 1996 Oct; 799():257-61. PubMed ID: 8958093
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of the reaction medium on enzyme activity in bio-organic synthesis: behaviour of lipase from Candida rugosa in the presence of polar additives.
    Triantafyllou AO; Adlercreutz P; Mattiasson B
    Biotechnol Appl Biochem; 1993 Apr; 17(2):167-79. PubMed ID: 8484905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study.
    Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving lipase production from Candida rugosa by a biochemical engineering approach.
    Gordillo MA; Montesinos JL; Casas C; Valero F; Lafuente J; Solà C
    Chem Phys Lipids; 1998 Jun; 93(1-2):131-42. PubMed ID: 9720255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved triglyceride transesterification by circular permuted Candida antarctica lipase B.
    Yu Y; Lutz S
    Biotechnol Bioeng; 2010 Jan; 105(1):44-50. PubMed ID: 19609971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of the pressure dependence of the enantioselectivity of Candida rugosalipase towards (+/-)-menthol.
    Kahlow UH; Schmid RD; Pleiss J
    Protein Sci; 2001 Oct; 10(10):1942-52. PubMed ID: 11567085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Lipases from the
    Rodríguez-Salarichs J; García de Lacoba M; Prieto A; Martínez MJ; Barriuso J
    J Chem Inf Model; 2021 Feb; 61(2):913-920. PubMed ID: 33555857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling of lipase binding to a substrate-water interface.
    Gruber CC; Pleiss J
    Methods Mol Biol; 2012; 861():313-27. PubMed ID: 22426727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.