BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29757606)

  • 41. A glimpse into the specialization history of the lipases/acyltransferases family of CpLIP2.
    Jan AH; Dubreucq E; Drone J; Subileau M
    Biochim Biophys Acta Proteins Proteom; 2017 Sep; 1865(9):1105-1113. PubMed ID: 28627478
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A convenient test for lipase activity in aqueous-based solutions.
    Guo J; Chen CP; Wang SG; Huang XJ
    Enzyme Microb Technol; 2015 Apr; 71():8-12. PubMed ID: 25765304
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel self-activation mechanism of Candida antarctica lipase B.
    Luan B; Zhou R
    Phys Chem Chem Phys; 2017 Jun; 19(24):15709-15714. PubMed ID: 28589990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on beta-cyclodextrin-based polymer.
    Ozmen EY; Yilmaz M
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):58-62. PubMed ID: 19091527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of flavor and fragrance esters using Candida antarctica lipase.
    Larios A; García HS; Oliart RM; Valerio-Alfaro G
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):373-6. PubMed ID: 15248036
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media.
    López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML
    Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression and properties of three novel fungal lipases/sterol esterases predicted in silico: comparison with other enzymes of the Candida rugosa-like family.
    Vaquero ME; Prieto A; Barriuso J; Martínez MJ
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10057-67. PubMed ID: 26272094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioinformatic analysis of α/β-hydrolase fold enzymes reveals subfamily-specific positions responsible for discrimination of amidase and lipase activities.
    Suplatov DA; Besenmatter W; Svedas VK; Svendsen A
    Protein Eng Des Sel; 2012 Nov; 25(11):689-97. PubMed ID: 23043134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters.
    Zheng MM; Lu Y; Dong L; Guo PM; Deng QC; Li WL; Feng YQ; Huang FH
    Bioresour Technol; 2012 Jul; 115():141-6. PubMed ID: 22209442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Purification and biochemical characterization of an extracellular lipase from Pseudomonas fluorescens MTCC 2421.
    Chakraborty K; Paulraj R
    J Agric Food Chem; 2009 May; 57(9):3859-66. PubMed ID: 19323471
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic resolution of profens by enantioselective esterification catalyzed by Candida antarctica and Candida rugosa lipases.
    Sikora A; Siódmiak T; Marszałł MP
    Chirality; 2014 Oct; 26(10):663-9. PubMed ID: 25080075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference.
    El Alaoui M; Soulère L; Noiriel A; Queneau Y; Abousalham A
    Chem Phys Lipids; 2017 Aug; 206():43-52. PubMed ID: 28629973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering of Talaromyces thermophilus lipase by altering its crevice-like binding site for highly efficient biocatalytic synthesis of chiral intermediate of Pregablin.
    Ding X; Zheng RC; Tang XL; Zheng YG
    Bioorg Chem; 2018 Apr; 77():330-338. PubMed ID: 29421709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atomic force microscope studies on the interactions of Candida rugosa lipase and supported lipidic bilayers.
    Prim N; Iversen L; Diaz P; Bjørnholm T
    Colloids Surf B Biointerfaces; 2006 Oct; 52(2):138-42. PubMed ID: 16829060
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes.
    Lee HR; Chung M; Kim MI; Ha SH
    Enzyme Microb Technol; 2017 Oct; 105():24-29. PubMed ID: 28756857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils.
    Akanbi TO; Barrow CJ
    Food Chem; 2017 Aug; 229():509-516. PubMed ID: 28372209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon-carbon bonds by hydrolytic enzymes.
    Branneby C; Carlqvist P; Magnusson A; Hult K; Brinck T; Berglund P
    J Am Chem Soc; 2003 Jan; 125(4):874-5. PubMed ID: 12537478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast carbon-carbon bond formation by a promiscuous lipase.
    Svedendahl M; Hult K; Berglund P
    J Am Chem Soc; 2005 Dec; 127(51):17988-9. PubMed ID: 16366534
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.
    Zhang R; Zhao L; Liu R
    J Photochem Photobiol B; 2016 Oct; 163():40-6. PubMed ID: 27529468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recombinant expression and characterization of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability.
    Tang SJ; Shaw JF; Sun KH; Sun GH; Chang TY; Lin CK; Lo YC; Lee GC
    Arch Biochem Biophys; 2001 Mar; 387(1):93-8. PubMed ID: 11368188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.