BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29757613)

  • 1. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.
    Kitt JP; Bryce DA; Minteer SD; Harris JM
    Anal Chem; 2018 Jun; 90(11):7048-7055. PubMed ID: 29757613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal Raman Microscopy Investigation of Self-Assembly of Hybrid Phospholipid Bilayers within Individual Porous Silica Chromatographic Particles.
    Kitt JP; Bryce DA; Minteer SD; Harris JM
    Anal Chem; 2019 Jun; 91(12):7790-7797. PubMed ID: 31083975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal-Raman Microscopy Characterization of Supported Phospholipid Bilayers Deposited on the Interior Surfaces of Chromatographic Silica.
    Bryce DA; Kitt JP; Harris JM
    J Am Chem Soc; 2018 Mar; 140(11):4071-4078. PubMed ID: 29486122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles.
    Kitt JP; Harris JM
    Langmuir; 2016 Sep; 32(35):9033-44. PubMed ID: 27493032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal Raman Microscopy for Label-Free Detection of Protein-Ligand Binding at Nanopore-Supported Phospholipid Bilayers.
    Bryce DA; Kitt JP; Harris JM
    Anal Chem; 2018 Oct; 90(19):11509-11516. PubMed ID: 30175578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy.
    Fox CB; Horton RA; Harris JM
    Anal Chem; 2006 Jul; 78(14):4918-24. PubMed ID: 16841911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman Microscopy Investigation of GLP-1 Peptide Association with Supported Phospholipid Bilayers.
    Bryce DA; Kitt JP; Harris JM
    Langmuir; 2021 Dec; 37(49):14265-14274. PubMed ID: 34856805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confocal Raman Microscopy Investigation of Phospholipid Monolayers Deposited on Nitrile-Modified Surfaces in Porous Silica Particles.
    Bryce DA; Kitt JP; Myres GJ; Harris JM
    Langmuir; 2020 Apr; 36(15):4071-4079. PubMed ID: 32212663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-controlled confocal Raman microscopy to detect phase transitions in phospholipid vesicles.
    Fox CB; Myers GA; Harris JM
    Appl Spectrosc; 2007 May; 61(5):465-9. PubMed ID: 17555614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip-enhanced Raman spectroscopy of lipid bilayers in water with an alumina- and silver-coated tungsten tip.
    Nakata A; Nomoto T; Toyota T; Fujinami M
    Anal Sci; 2013; 29(9):865-9. PubMed ID: 24025569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal Raman Microscopy for pH-Gradient Preconcentration and Quantitative Analyte Detection in Optically Trapped Phospholipid Vesicles.
    Hardcastle CD; Harris JM
    Anal Chem; 2015 Aug; 87(15):7979-86. PubMed ID: 26132552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically trapping confocal Raman microscopy of individual lipid vesicles: kinetics of phospholipase A(2)-catalyzed hydrolysis of phospholipids in the membrane bilayer.
    Cherney DP; Myers GA; Horton RA; Harris JM
    Anal Chem; 2006 Oct; 78(19):6928-35. PubMed ID: 17007516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy.
    Cherney DP; Bridges TE; Harris JM
    Anal Chem; 2004 Sep; 76(17):4920-8. PubMed ID: 15373424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute partitioning into lipid bilayer membranes.
    De Young LR; Dill KA
    Biochemistry; 1988 Jul; 27(14):5281-9. PubMed ID: 3167046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies.
    Levin CS; Kundu J; Janesko BG; Scuseria GE; Raphael RM; Halas NJ
    J Phys Chem B; 2008 Nov; 112(45):14168-75. PubMed ID: 18942873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partitioning of 2,6-Bis(1H-Benzimidazol-2-yl)pyridine fluorophore into a phospholipid bilayer: complementary use of fluorescence quenching studies and molecular dynamics simulations.
    Kyrychenko A; Sevriukov IY; Syzova ZA; Ladokhin AS; Doroshenko AO
    Biophys Chem; 2011 Feb; 154(1):8-17. PubMed ID: 21211898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-angle neutron scattering studies of phospholipid-NSAID adducts.
    Boggara MB; Krishnamoorti R
    Langmuir; 2010 Apr; 26(8):5734-45. PubMed ID: 20014785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-Leaflet Phospholipid Exchange Impacts the Ligand Density Available for Protein Binding at Supported Lipid Bilayers.
    Myres GJ; Kitt JP; Harris JM
    Langmuir; 2022 Jun; 38(22):6967-6976. PubMed ID: 35617691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; VĂ¡cha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.