These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29757613)

  • 21. Confocal Raman Microscopy for in Situ Measurement of Octanol-Water Partitioning within the Pores of Individual C18-Functionalized Chromatographic Particles.
    Kitt JP; Harris JM
    Anal Chem; 2015 May; 87(10):5340-7. PubMed ID: 25901942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hanatoxin inserts into phospholipid membranes without pore formation.
    Lou KL; Hsieh MH; Chen WJ; Cheng YC; Jian JN; Lee MT; Lin TL; Shiau YS; Liou HH
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):917-923. PubMed ID: 28143758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phospholipid vesicle fusion on micropatterned polymeric bilayer substrates.
    Okazaki T; Morigaki K; Taguchi T
    Biophys J; 2006 Sep; 91(5):1757-66. PubMed ID: 16766614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of pH and ibuprofen on the phospholipid bilayer bending modulus.
    Boggara MB; Faraone A; Krishnamoorti R
    J Phys Chem B; 2010 Jun; 114(24):8061-6. PubMed ID: 20518571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confocal Raman microscopy probing of temperature-controlled release from individual, optically-trapped phospholipid vesicles.
    Schaefer JJ; Ma C; Harris JM
    Anal Chem; 2012 Nov; 84(21):9505-12. PubMed ID: 23043532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can NO-indomethacin counteract the topical gastric toxicity induced by indomethacin interactions with phospholipid bilayers?
    Pereira-Leite C; Nunes C; Bozelli JC; Schreier S; Kamma-Lorger CS; Cuccovia IM; Reis S
    Colloids Surf B Biointerfaces; 2018 Sep; 169():375-383. PubMed ID: 29803153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid-Lipid Bilayers Induce
    Zare M; Kitt JP; Wen X; Heider EC; Harris JM
    Anal Chem; 2021 Mar; 93(8):4118-4125. PubMed ID: 33586951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of supported membranes on topographically patterned polymeric elastomers and their applications to microcontact printing.
    Sapuri-Butti AR; Butti RC; Parikh AN
    Langmuir; 2007 Dec; 23(25):12645-54. PubMed ID: 17979304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.
    Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy.
    Cheng JX; Pautot S; Weitz DA; Xie XS
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9826-30. PubMed ID: 12904580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes.
    Boggara MB; Mihailescu M; Krishnamoorti R
    J Am Chem Soc; 2012 Dec; 134(48):19669-76. PubMed ID: 23134450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous partitioning of particles into cellar structures in a membrane system.
    Tanaka H; Isobe M; Yamamoto J
    Phys Rev Lett; 2002 Oct; 89(16):168303. PubMed ID: 12398762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Confocal Raman microscopy for investigating synthesis and characterization of individual optically trapped vinyl-polymerized surfactant particles.
    Schaefer JJ; Crawford AC; Porter MD; Harris JM
    Appl Spectrosc; 2014; 68(6):633-41. PubMed ID: 25014718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of giant membrane lobes mechanically driven by wetting fronts of phospholipid membranes at water-solid interfaces.
    Suzuki K; Masuhara H
    Langmuir; 2005 Jan; 21(2):537-44. PubMed ID: 15641821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithographically defined macroscale modulation of lateral fluidity and phase separation realized via patterned nanoporous silica-supported phospholipid bilayers.
    Kendall EL; Ngassam VN; Gilmore SF; Brinker CJ; Parikh AN
    J Am Chem Soc; 2013 Oct; 135(42):15718-21. PubMed ID: 24111800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles.
    James HP; Jadhav S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110782. PubMed ID: 31945633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of high surface curvature on the main phase transition of supported phospholipid bilayers on SiO2 nanoparticles.
    Ahmed S; Wunder SL
    Langmuir; 2009 Apr; 25(6):3682-91. PubMed ID: 19231878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible mechanism of adhesion in a mica supported phospholipid bilayer.
    Pertsin A; Grunze M
    J Chem Phys; 2014 May; 140(18):184707. PubMed ID: 24832299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of frictional properties of a phospholipid bilayer in a liquid environment with lateral force microscopy as a function of NaCl concentration.
    Oncins G; Garcia-Manyes S; Sanz F
    Langmuir; 2005 Aug; 21(16):7373-9. PubMed ID: 16042468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.