BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29757619)

  • 1. Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties.
    Plappert SF; Quraishi S; Pircher N; Mikkonen KS; Veigel S; Klinger KM; Potthast A; Rosenau T; Liebner FW
    Biomacromolecules; 2018 Jul; 19(7):2969-2978. PubMed ID: 29757619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions.
    Yang Q; Fukuzumi H; Saito T; Isogai A; Zhang L
    Biomacromolecules; 2011 Jul; 12(7):2766-71. PubMed ID: 21657790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.
    Aulin C; Karabulut E; Tran A; Wågberg L; Lindström T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7352-9. PubMed ID: 23834391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Films prepared from electrosterically stabilized nanocrystalline cellulose.
    Yang H; Tejado A; Alam N; Antal M; van de Ven TG
    Langmuir; 2012 May; 28(20):7834-42. PubMed ID: 22482733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive investigation on modified cellulose nanocrystals and their films properties.
    El Miri N; Heggset EB; Wallsten S; Svedberg A; Syverud K; Norgren M
    Int J Biol Macromol; 2022 Oct; 219():998-1008. PubMed ID: 35963351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability.
    Aulin C; Salazar-Alvarez G; Lindström T
    Nanoscale; 2012 Oct; 4(20):6622-8. PubMed ID: 22976562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.
    Larsson PA; Berglund LA; Wågberg L
    Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals.
    Ma Q; Hu D; Wang L
    Int J Biol Macromol; 2016 May; 86():606-12. PubMed ID: 26845479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.
    El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M
    Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents.
    Kim UJ; Lee YR; Kang TH; Choi JW; Kimura S; Wada M
    Carbohydr Polym; 2017 May; 163():34-42. PubMed ID: 28267516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent oxygen barrier nanocellulose composite films with a sandwich structure.
    Du L; Yu H; Zhang B; Tang R; Zhang Y; Qi C; Wolcott MP; Yu Z; Wang J
    Carbohydr Polym; 2021 Sep; 268():118206. PubMed ID: 34127230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications.
    Yadav M; Chiu FC
    Carbohydr Polym; 2019 May; 211():181-194. PubMed ID: 30824078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodate oxidation of nanofibrillated cellulose films for active packaging applications.
    Fernández-Santos J; Valls C; Cusola O; Roncero MB
    Int J Biol Macromol; 2024 May; 267(Pt 2):131553. PubMed ID: 38621569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers.
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.
    Cheng S; Zhang Y; Cha R; Yang J; Jiang X
    Nanoscale; 2016 Jan; 8(2):973-8. PubMed ID: 26661341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-Gelatin Films Cross-Linked with Dialdehyde Cellulose Nanocrystals as Potential Materials for Wound Dressings.
    Wegrzynowska-Drzymalska K; Mlynarczyk DT; Chelminiak-Dudkiewicz D; Kaczmarek H; Goslinski T; Ziegler-Borowska M
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films.
    Lizundia E; Urruchi A; Vilas JL; León LM
    Carbohydr Polym; 2016 Jan; 136():250-8. PubMed ID: 26572353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.